Heat balance of urban ecosystem is a key point for the study of urban climate and micro-climate pattern and its change mechanism. Urban heat island effect is becoming increasingly serious,which is mainly caused by the...Heat balance of urban ecosystem is a key point for the study of urban climate and micro-climate pattern and its change mechanism. Urban heat island effect is becoming increasingly serious,which is mainly caused by the change of the earth's surface cover and the anthropogenic heat release. In this study,the simulation experiment for the anthropogenic heat release was designed according to the heat balance principle. A set of buildings of miniature city were used to constitute the residential area,U grooves were applied to simulate the single building,and the fluorescent lamps in the U groove were regarded as the heat sources of the anthropogenic heat release. The simulation experiment was launched with long-short wave sun photometer,sonic anemothermometer and heat flow gauge in the experiment site. Then the net solar radiation,sensible heat flux and heat flux into the ground were determined. The quantities of the anthropogenic heat release were calculated based on the heat balance principle,and were compared with the theoretical power consumption of the fluorescent lamps. The root mean square error( RMSE) of the simulation for the anthropogenic heat release reaches0. 078 W·m- 2,a comparatively high precision,which showes that the anthropogenic heat release can be accurately determined through the simulation experiments. This study provided a scientific method for the purpose of monitoring the anthropogenic heat release.展开更多
The 1-year(2009-2010) measurements are analyzed of the urban surface energy balance(SEB) obtained from the sensors located at three vertical layers of a 325-m tower in downtown Beijing.Results show that:(1) The...The 1-year(2009-2010) measurements are analyzed of the urban surface energy balance(SEB) obtained from the sensors located at three vertical layers of a 325-m tower in downtown Beijing.Results show that:(1) The measurements from the 325-m tower represent the SEB characteristics of the cities located in semi-humid warm-temperate continental monsoon climate zone.In a typical hot and rainy summer,cold and dry winter,the measured Bowen ratio is minimum in summer and maximum in winter.The Bowen ratio measured at 140 m for spring,summer,autumn,and winter are 2.86,0.82,1.17,and 4.16 respectively.(2) At the height of 140-m(in the constant flux layer),the noontime albedo is ~0.10 for summer,~0.12 for spring and autumn,and ~0.14 for winter.The ratios of daytime sensible heat flux,latent heat flux,and storage heat flux to net radiation are 0.25,0.16,and 0.59 for clear-sky days,and 0.33,0.19,and 0.48 for cloudy days respectively.(3) Under clear-sky days,the nighttime sensible heat flux is almost zero,but the latent heat flux is greater than zero.For cloudy days,the nighttime sensible heat flux is slightly greater than the latent heat flux in winter.The nighttime upward heat flux is presumably due to the anthropogenic release(mainly latent heat for summer,while latent and sensible heat for winter).展开更多
The numerical modeling of the impacts of urban buildings in mesoscale meteorological models has gradually improved in recent years. Correctly representing the latent heat flux from urban surfaces is a key issue in urb...The numerical modeling of the impacts of urban buildings in mesoscale meteorological models has gradually improved in recent years. Correctly representing the latent heat flux from urban surfaces is a key issue in urban land-atmosphere coupling studies but is a common weakness in current urban canopy models. Using the surface energy balance data at a height of 140 m from a 325 m meteorological tower in Beijing, we conducted a 1-year continuous off-line simulation by using a coupled land surface model and a single-layer urban canopy model and found that this model has a relatively large systematic error for simulated latent heat flux. To improve the numerical method for modeling latent heat flux from urban surfaces, we combined observational analysis and urban land surface model to derive an oasis effect coefficient for urban green areas; to develop a temporal variation formula for water availability in urban impervious surfaces; and to specify a diurnal profile and the maximum values of anthropogenic latent heat release for four seasons. These results are directly incorporated into the urban land surface model to improve model performance. In addition, this method serves as a reference for studies in other urban areas.展开更多
基金supported by the National Natural Science Foundation of China ( No. 40971187 and 41472243 )the Funded By Open Research Fund Program of Key Laboratory of Digital Mapping and Land Information Application Engineering,National Administration of Surveying,Mapping and Geoinformation ( No. GCWD201402 )
文摘Heat balance of urban ecosystem is a key point for the study of urban climate and micro-climate pattern and its change mechanism. Urban heat island effect is becoming increasingly serious,which is mainly caused by the change of the earth's surface cover and the anthropogenic heat release. In this study,the simulation experiment for the anthropogenic heat release was designed according to the heat balance principle. A set of buildings of miniature city were used to constitute the residential area,U grooves were applied to simulate the single building,and the fluorescent lamps in the U groove were regarded as the heat sources of the anthropogenic heat release. The simulation experiment was launched with long-short wave sun photometer,sonic anemothermometer and heat flow gauge in the experiment site. Then the net solar radiation,sensible heat flux and heat flux into the ground were determined. The quantities of the anthropogenic heat release were calculated based on the heat balance principle,and were compared with the theoretical power consumption of the fluorescent lamps. The root mean square error( RMSE) of the simulation for the anthropogenic heat release reaches0. 078 W·m- 2,a comparatively high precision,which showes that the anthropogenic heat release can be accurately determined through the simulation experiments. This study provided a scientific method for the purpose of monitoring the anthropogenic heat release.
基金supported by National Natural Science Foundation of China (Grant No. 41175015)the Ministry of Science and Technology of China (Grant Nos. GYHY200906026,GYHY201106050,2008BAC37B04,and 2006BAJ02A01)
文摘The 1-year(2009-2010) measurements are analyzed of the urban surface energy balance(SEB) obtained from the sensors located at three vertical layers of a 325-m tower in downtown Beijing.Results show that:(1) The measurements from the 325-m tower represent the SEB characteristics of the cities located in semi-humid warm-temperate continental monsoon climate zone.In a typical hot and rainy summer,cold and dry winter,the measured Bowen ratio is minimum in summer and maximum in winter.The Bowen ratio measured at 140 m for spring,summer,autumn,and winter are 2.86,0.82,1.17,and 4.16 respectively.(2) At the height of 140-m(in the constant flux layer),the noontime albedo is ~0.10 for summer,~0.12 for spring and autumn,and ~0.14 for winter.The ratios of daytime sensible heat flux,latent heat flux,and storage heat flux to net radiation are 0.25,0.16,and 0.59 for clear-sky days,and 0.33,0.19,and 0.48 for cloudy days respectively.(3) Under clear-sky days,the nighttime sensible heat flux is almost zero,but the latent heat flux is greater than zero.For cloudy days,the nighttime sensible heat flux is slightly greater than the latent heat flux in winter.The nighttime upward heat flux is presumably due to the anthropogenic release(mainly latent heat for summer,while latent and sensible heat for winter).
基金supported by National Natural Science Foundation of China(Grant No.41175015)Ministry of Science and Technology of China(Grant Nos.2012BAC22B00 and GYHY200906026)
文摘The numerical modeling of the impacts of urban buildings in mesoscale meteorological models has gradually improved in recent years. Correctly representing the latent heat flux from urban surfaces is a key issue in urban land-atmosphere coupling studies but is a common weakness in current urban canopy models. Using the surface energy balance data at a height of 140 m from a 325 m meteorological tower in Beijing, we conducted a 1-year continuous off-line simulation by using a coupled land surface model and a single-layer urban canopy model and found that this model has a relatively large systematic error for simulated latent heat flux. To improve the numerical method for modeling latent heat flux from urban surfaces, we combined observational analysis and urban land surface model to derive an oasis effect coefficient for urban green areas; to develop a temporal variation formula for water availability in urban impervious surfaces; and to specify a diurnal profile and the maximum values of anthropogenic latent heat release for four seasons. These results are directly incorporated into the urban land surface model to improve model performance. In addition, this method serves as a reference for studies in other urban areas.