期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
循环流化床入炉垃圾热值软测量
被引量:
8
1
作者
尤海辉
马增益
+4 位作者
唐义军
王月兰
郑林
俞钟
吉澄军
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2017年第6期1163-1172,共10页
面对城市生活垃圾(MSW)的热值(HVs)难以实时测量的现状,构建基于减法聚类的自适应模糊神经网络(ANFIS)的入炉垃圾热值软测量模型.针对循环流化床(CFB)生活垃圾焚烧炉的工艺特点,选择模型的输入变量;依据专家经验对样本的热值进行模糊分...
面对城市生活垃圾(MSW)的热值(HVs)难以实时测量的现状,构建基于减法聚类的自适应模糊神经网络(ANFIS)的入炉垃圾热值软测量模型.针对循环流化床(CFB)生活垃圾焚烧炉的工艺特点,选择模型的输入变量;依据专家经验对样本的热值进行模糊分类;利用减法聚类(SC)算法对训练样本进行分析,自适应地确定初始模糊规则和模糊神经网络的初始结构参数;结合最小二乘估计法和误差反向传播算法对模糊神经网络的参数进行学习,构建自适应神经模糊推理系统,完成CFB生活垃圾焚烧锅炉入炉垃圾热值的软测量建模.对比研究BP神经网络、RBF神经网络和支持向量机模型在垃圾热值预测方面的表现,结果表明:基于减法聚类的模糊神经网络模型具有最高的预测精度.预测值和实际垃圾热值的比较结果证明:模糊神经网络模型能够表征垃圾热值的整体变化趋势,可以对循环流化床垃圾焚烧锅炉的运行、控制和管理起到指导作用,并且能够为循环流化床生活垃圾焚烧锅炉的燃烧自动控制(ACC)系统提供可靠的热值反馈信号.
展开更多
关键词
循环流化床(CFB)
焚烧炉
城市生活垃圾热值
模糊神经网络
减法聚类
BP神经网络
径向基函数神经网络
支持向量机(SVM)
下载PDF
职称材料
题名
循环流化床入炉垃圾热值软测量
被引量:
8
1
作者
尤海辉
马增益
唐义军
王月兰
郑林
俞钟
吉澄军
机构
浙江大学能源清洁利用国家重点实验室
杭州萧山锦江绿色能源有限公司
出处
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2017年第6期1163-1172,共10页
基金
国家环境保护公益项目(201503013)
文摘
面对城市生活垃圾(MSW)的热值(HVs)难以实时测量的现状,构建基于减法聚类的自适应模糊神经网络(ANFIS)的入炉垃圾热值软测量模型.针对循环流化床(CFB)生活垃圾焚烧炉的工艺特点,选择模型的输入变量;依据专家经验对样本的热值进行模糊分类;利用减法聚类(SC)算法对训练样本进行分析,自适应地确定初始模糊规则和模糊神经网络的初始结构参数;结合最小二乘估计法和误差反向传播算法对模糊神经网络的参数进行学习,构建自适应神经模糊推理系统,完成CFB生活垃圾焚烧锅炉入炉垃圾热值的软测量建模.对比研究BP神经网络、RBF神经网络和支持向量机模型在垃圾热值预测方面的表现,结果表明:基于减法聚类的模糊神经网络模型具有最高的预测精度.预测值和实际垃圾热值的比较结果证明:模糊神经网络模型能够表征垃圾热值的整体变化趋势,可以对循环流化床垃圾焚烧锅炉的运行、控制和管理起到指导作用,并且能够为循环流化床生活垃圾焚烧锅炉的燃烧自动控制(ACC)系统提供可靠的热值反馈信号.
关键词
循环流化床(CFB)
焚烧炉
城市生活垃圾热值
模糊神经网络
减法聚类
BP神经网络
径向基函数神经网络
支持向量机(SVM)
Keywords
circulating fluidized bed(CFB)
incinerators
municipal solid waste(MSW)heating values(HVs)
adaptive neuro-fuzzy inference system
subtractive clustering
multi layer perceptron(MLP)
radial basis function neural network
分类号
TK229.66 [动力工程及工程热物理—动力机械及工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
循环流化床入炉垃圾热值软测量
尤海辉
马增益
唐义军
王月兰
郑林
俞钟
吉澄军
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2017
8
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部