期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进U^(2)Net网络和无人机影像的城市绿化识别方法
1
作者
王桢
杨培峰
+1 位作者
张秋仪
杨晋苏
《陕西科技大学学报》
北大核心
2024年第3期174-181,共8页
针对城市绿化识别中存在的无可用公开数据集、人工标注数据任务大、图像边界分割不精确的问题,提出结合无人机影像和深度学习网络的城市绿化自动识别框架.首先建立基于无人机影像的城市绿化数据集,其次,运用交互式自动标注工具EISeg对...
针对城市绿化识别中存在的无可用公开数据集、人工标注数据任务大、图像边界分割不精确的问题,提出结合无人机影像和深度学习网络的城市绿化自动识别框架.首先建立基于无人机影像的城市绿化数据集,其次,运用交互式自动标注工具EISeg对数据进行标注,引入U^(2)Net用于无人机影像下的城市绿化识别,最后,在网络的特征提取模块引入最大池化索引来加强对目标边界的分割能力.结果表明,相较于其它深度学习网络,U^(2)Net在小规模数据集中有着优异的表现且改进后的网络在1 000张的训练集中达到了97.16%的分类精度,较原始的U^(2)Net提高0.68%,模型参数量、计算量、内存均未显著提升.改进后的方法提升了城市绿化的识别精度,可以为城市绿化识别提供一种新的自动解译方法.
展开更多
关键词
城市绿化识别
U2Net
无人机影像
深度学习
下载PDF
职称材料
题名
基于改进U^(2)Net网络和无人机影像的城市绿化识别方法
1
作者
王桢
杨培峰
张秋仪
杨晋苏
机构
福建理工大学计算机科学与数学学院
福建理工大学建筑与城乡规划学院
出处
《陕西科技大学学报》
北大核心
2024年第3期174-181,共8页
基金
国家自然科学基金项目(42201225)
福建省自然科学基金青创项目(2021J05220)。
文摘
针对城市绿化识别中存在的无可用公开数据集、人工标注数据任务大、图像边界分割不精确的问题,提出结合无人机影像和深度学习网络的城市绿化自动识别框架.首先建立基于无人机影像的城市绿化数据集,其次,运用交互式自动标注工具EISeg对数据进行标注,引入U^(2)Net用于无人机影像下的城市绿化识别,最后,在网络的特征提取模块引入最大池化索引来加强对目标边界的分割能力.结果表明,相较于其它深度学习网络,U^(2)Net在小规模数据集中有着优异的表现且改进后的网络在1 000张的训练集中达到了97.16%的分类精度,较原始的U^(2)Net提高0.68%,模型参数量、计算量、内存均未显著提升.改进后的方法提升了城市绿化的识别精度,可以为城市绿化识别提供一种新的自动解译方法.
关键词
城市绿化识别
U2Net
无人机影像
深度学习
Keywords
urban greening identification
U^(2)Net
UAV images
deep learning
分类号
TP751 [自动化与计算机技术—检测技术与自动化装置]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进U^(2)Net网络和无人机影像的城市绿化识别方法
王桢
杨培峰
张秋仪
杨晋苏
《陕西科技大学学报》
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部