The power/energy losses reduction in distribution systems is an important issue during planning and operation, with important technical and economical implications. Thus, the energy losses minimization implies not onl...The power/energy losses reduction in distribution systems is an important issue during planning and operation, with important technical and economical implications. Thus, the energy losses minimization implies not only the technical improvement of the network, through its renewal with the introduction of the technological innovations in the equipment and circuit components as well as the optimal planning of the design and development of the network, but also requires the use of the methods and software tools to facilitate the operation process. The paper presents a strategy for power / energy saving which is replacement of the 6 kV voltage level with 20 kV voltage level. In this line, different urban distribution networks were analyzed using fuzzy techniques for load modeling.展开更多
The reasonability of the adopted capacity load ratio numerical value in urban power grid planning determines the economy of planning level yearly power grid.Too large capacity load ratio will result in the increasing ...The reasonability of the adopted capacity load ratio numerical value in urban power grid planning determines the economy of planning level yearly power grid.Too large capacity load ratio will result in the increasing investment in the early period of power grid construction, however, too small capacity load ratio will make the power grid have poor adaptability, affecting the power supply. Reasonably determining the adopted regional power grid capacity load ratio quantitative numerical value in planning has a strong guiding significance for constructing reliable and economic power grid and preventing power grid from excessive advance or lagging behind the load development. This paper, through the statistics and analysis of a certain regional power grid 2010-2012 three years' power grid daily load characteristics and the investment benefit evaluation of three years' 220KV power grid individual project, makes a preliminary analysis and puts forwards the specific advice on the reasonable values of power ~rid 35-220KV power transformation capacity load ratio.展开更多
文摘The power/energy losses reduction in distribution systems is an important issue during planning and operation, with important technical and economical implications. Thus, the energy losses minimization implies not only the technical improvement of the network, through its renewal with the introduction of the technological innovations in the equipment and circuit components as well as the optimal planning of the design and development of the network, but also requires the use of the methods and software tools to facilitate the operation process. The paper presents a strategy for power / energy saving which is replacement of the 6 kV voltage level with 20 kV voltage level. In this line, different urban distribution networks were analyzed using fuzzy techniques for load modeling.
文摘The reasonability of the adopted capacity load ratio numerical value in urban power grid planning determines the economy of planning level yearly power grid.Too large capacity load ratio will result in the increasing investment in the early period of power grid construction, however, too small capacity load ratio will make the power grid have poor adaptability, affecting the power supply. Reasonably determining the adopted regional power grid capacity load ratio quantitative numerical value in planning has a strong guiding significance for constructing reliable and economic power grid and preventing power grid from excessive advance or lagging behind the load development. This paper, through the statistics and analysis of a certain regional power grid 2010-2012 three years' power grid daily load characteristics and the investment benefit evaluation of three years' 220KV power grid individual project, makes a preliminary analysis and puts forwards the specific advice on the reasonable values of power ~rid 35-220KV power transformation capacity load ratio.