期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于二次分解和MVO-TCN的城轨站点客流预测研究
1
作者
周建国
蔡晨昊
《武汉理工大学学报》
CAS
2024年第9期100-108,共9页
为提升城轨站点客流预测精度,提出一种基于变分模态分解(VMD)、经验小波变换(EWT)和多元宇宙优化算法(MVO)优化的时间卷积神经网络(TCN)的复合预测模型。使用VMD对城轨站点客流数据进行初步分解,生成若干本征模态函数(IMF)。随后,计算每...
为提升城轨站点客流预测精度,提出一种基于变分模态分解(VMD)、经验小波变换(EWT)和多元宇宙优化算法(MVO)优化的时间卷积神经网络(TCN)的复合预测模型。使用VMD对城轨站点客流数据进行初步分解,生成若干本征模态函数(IMF)。随后,计算每个IMF的样本熵,并利用K-means算法根据样本熵值将IMFs聚类为复合分量,对高频复合分量进一步应用EWT进行细化分解,以减少波动性强的城轨站点客流数据的分解残留。通过MVO算法对TCN模型的参数进行优化,以强化模型在各个分量上的预测能力。最后,将各分量的预测结果进行重构,得到最终的客流预测值。实验结果表明,文中所提出的VMD-EWT-MVO-TCN模型通过二次分解改善了分解残留问题,结合对TCN参数的寻优提升了城轨站点客流预测精度,RMSE和MAE值分别为14.936 5和5.789 3,相较TCN模型提升了45.46%和50.28%。该模型能够为城轨站点客流管理提供新的技术支持和决策参考。
展开更多
关键词
城轨站点客流预测
预测
分析
二次模态分解
多元宇宙优化算法
时间卷积神经网络
原文传递
题名
基于二次分解和MVO-TCN的城轨站点客流预测研究
1
作者
周建国
蔡晨昊
机构
华北电力大学经济管理系
出处
《武汉理工大学学报》
CAS
2024年第9期100-108,共9页
文摘
为提升城轨站点客流预测精度,提出一种基于变分模态分解(VMD)、经验小波变换(EWT)和多元宇宙优化算法(MVO)优化的时间卷积神经网络(TCN)的复合预测模型。使用VMD对城轨站点客流数据进行初步分解,生成若干本征模态函数(IMF)。随后,计算每个IMF的样本熵,并利用K-means算法根据样本熵值将IMFs聚类为复合分量,对高频复合分量进一步应用EWT进行细化分解,以减少波动性强的城轨站点客流数据的分解残留。通过MVO算法对TCN模型的参数进行优化,以强化模型在各个分量上的预测能力。最后,将各分量的预测结果进行重构,得到最终的客流预测值。实验结果表明,文中所提出的VMD-EWT-MVO-TCN模型通过二次分解改善了分解残留问题,结合对TCN参数的寻优提升了城轨站点客流预测精度,RMSE和MAE值分别为14.936 5和5.789 3,相较TCN模型提升了45.46%和50.28%。该模型能够为城轨站点客流管理提供新的技术支持和决策参考。
关键词
城轨站点客流预测
预测
分析
二次模态分解
多元宇宙优化算法
时间卷积神经网络
Keywords
passenger flow forecasting at urban rail stations
predictive analytics
quadratic modal decomposition
Multi-verse Universe Optimization algorithm
temporal convolutional neural network
分类号
U121 [交通运输工程]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于二次分解和MVO-TCN的城轨站点客流预测研究
周建国
蔡晨昊
《武汉理工大学学报》
CAS
2024
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部