期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
空间信息自适应融合的高光谱图像分类方法 被引量:3
1
作者 廖建尚 王立国 《光子学报》 EI CAS CSCD 北大核心 2017年第4期152-164,共13页
针对单一的滤波器提取高光谱图像空间纹理信息时不能获得完整的图像特征的不足,提出一种结合双边滤波和域转换标准卷积滤波的高光谱图像分类算法.该方法采用空间信息自适应融合的分类寻优,先对高光谱波段进行抽样分组,再用双边滤波和域... 针对单一的滤波器提取高光谱图像空间纹理信息时不能获得完整的图像特征的不足,提出一种结合双边滤波和域转换标准卷积滤波的高光谱图像分类算法.该方法采用空间信息自适应融合的分类寻优,先对高光谱波段进行抽样分组,再用双边滤波和域转换标准卷积滤波对分组后的波段进行滤波,两种空间信息进行线性融合后交由支持向量机完成分类.实验表明,相比使用光谱信息、高光谱降维、空谱结合的支持向量机分类方法和边缘保持滤波以及递归滤波的方法,本文所提算法对高光谱图像的分类精度有较大提高,在训练样本仅为5%和3%的情况下,对印第安农林和帕维亚大学图像的总体分类精度分别达到了96.95%和97.89%,比其他算法高出213个百分点,验证了该方法在高光谱图像分类的有效性. 展开更多
关键词 高光谱图像 空间信息 自适应融合 分类 双边滤波 域转换卷积滤波
下载PDF
面向空间自相关信息的高光谱图像分类方法 被引量:4
2
作者 廖建尚 王立国 《农业机械学报》 EI CAS CSCD 北大核心 2018年第6期215-224,共10页
空间滤波器在提取高光谱图像纹理信息过程中容易丢失空间自相关信息,导致植被分类精度不高。针对当前方法的不足,提出一种空间自相关信息的高光谱图像分类算法(Classification of hyperspectral image based on spatial autocorrelation... 空间滤波器在提取高光谱图像纹理信息过程中容易丢失空间自相关信息,导致植被分类精度不高。针对当前方法的不足,提出一种空间自相关信息的高光谱图像分类算法(Classification of hyperspectral image based on spatial autocorrelation information,CHISCI)。该方法先用域转换线性插值卷积滤波(Domain transform filter of interpolated convolution,DTFOIC)对高光谱全波段图像提取空间自相关信息,然后对高光谱数据进行主成分分析(Principal component analysis,PCA)降维后的前部分主成分提取空间自相关信息,两种空间自相关信息线性融合后交由支持向量机(Support vector machine,SVM)完成分类。试验表明,相比使用光谱信息、高光谱降维、空谱结合的SVM分类方法和边缘保持滤波以及递归滤波的方法,所提出的CHISCI方法对高光谱图像的植被分类精度有较大提高,在训练样本仅为6%和1%的情况下,对印第安农林和萨里斯山谷数据集分类的总体分类精度分别达到96.16%和98.67%,比其他算法高出2~16个百分点,验证了该方法的有效性。 展开更多
关键词 高光谱图像 空间自相关信息 转换线性插值卷积滤波 植被分类
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部