期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于域适应神经网络与联合分布自适应的无监督故障诊断方法 被引量:8
1
作者 张钊 李新宇 高亮 《计算机集成制造系统》 EI CSCD 北大核心 2022年第8期2365-2374,共10页
故障诊断对于机械设备的健康管理十分重要,当前,数据驱动的故障诊断方法已成为了本领域研究热点。然而,机械设备的工作状态与条件是不断变化的,这导致故障数据分布不同,故障诊断带来了挑战。针对该问题,提出一种基于域适应神经网络与联... 故障诊断对于机械设备的健康管理十分重要,当前,数据驱动的故障诊断方法已成为了本领域研究热点。然而,机械设备的工作状态与条件是不断变化的,这导致故障数据分布不同,故障诊断带来了挑战。针对该问题,提出一种基于域适应神经网络与联合分布自适应的无监督故障诊断方法。首先,将不同数据分布的故障诊断数据通过信号转图像的方法进行数据预处理;然后,使用域适应神经网络生成数据分布相似的特征;最后使用联合分布自适应方法处理所生成的特征。该方法可以有效地解决工作状态与条件发生变化所带来的数据分布不同的问题。所生成的模型可以在无标签的情况下,较为准确地诊断在另一个工作状态下采样的故障数据。最后,利用本领域的经典案例———凯斯西储大学轴承数据集,对所提方法进行了测试验证,实验结果证明了该方法的可行性与有效性。 展开更多
关键词 故障诊断 域适应神经网络 联合分布自适应方法 无监督学习 迁移学习
下载PDF
域适应网络与平衡动态分布自适应的轴承变工况故障迁移诊断研究
2
作者 王廷轩 王贵勇 +1 位作者 刘韬 王振亚 《机械强度》 CAS CSCD 北大核心 2023年第3期509-518,共10页
机械设备在工业现场下的工况复杂多变,导致故障样本分布不均,给传统机器学习带来巨大的困扰。针对上述问题,提出了一种基于域适应神经网络与平衡动态分布自适应的轴承故障迁移诊断方法。首先,利用小波变换改进卷积神经网络的卷积层,并... 机械设备在工业现场下的工况复杂多变,导致故障样本分布不均,给传统机器学习带来巨大的困扰。针对上述问题,提出了一种基于域适应神经网络与平衡动态分布自适应的轴承故障迁移诊断方法。首先,利用小波变换改进卷积神经网络的卷积层,并自适应提取轴承样本特征。其次,利用最大均值差异度量和权重正则化在损失函数处理所生成的特征,改善样本分布差异,获取域适应神经网络模型。最后,利用A-distance距离改进平衡分布自适应,使其具备动态特性,进一步改善样本分布差异,通过KNN分类器实现轴承迁移诊断。经过实验验证,所提方法在同试验台和跨试验台案例验证中,能够较为精确地迁移出轴承故障状态,证明该方法可有效解决无标签样本在变工况条件下样本分布不均的问题,具备有效性与鲁棒性。 展开更多
关键词 轴承 域适应神经网络 平衡分布自适应 小波变换 A-distance距离 迁移诊断
下载PDF
基于域自适应神经网络的光学与合成孔径雷达遥感图像变化检测
3
作者 姚琴风 宁永香 杜孙稳 《激光与光电子学进展》 CSCD 北大核心 2024年第18期245-254,共10页
为解决光学和合成孔径雷达(SAR)遥感图像变化检测中存在的原始图像特征损失和意外噪声引入问题,提高遥感影响图像变化检测质量与精度,提出一种基于域自适应神经网络的光学和SAR遥感图像变化检测方法。首先,引入域自适应约束,将提取的异... 为解决光学和合成孔径雷达(SAR)遥感图像变化检测中存在的原始图像特征损失和意外噪声引入问题,提高遥感影响图像变化检测质量与精度,提出一种基于域自适应神经网络的光学和SAR遥感图像变化检测方法。首先,引入域自适应约束,将提取的异构深度特征对齐到一个共同的深度特征空间中,从而提高异构图像变化检测的性能。其次,通过将对齐的深度特征输入多尺度解码器生成最终的变化图。最后,选取3个典型数据集对所提方法的有效性进行实验,并选取6种先进的检测方法进行对比分析。实验结果表明,所提检测方法在3个数据集上的平均精度、召回率、分割性能和加权值性能分别为80.81%、84.39%、73.67%和82.58%,优于对比方法。 展开更多
关键词 合成孔径雷达图像 光学图像 特征对齐 适应神经网络 变化检测
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部