期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于伪标签细化和语义对齐的异构域自适应
1
作者 吴兰 崔全龙 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2023年第9期1876-1884,1902,共10页
在进行跨域知识迁移时,现有异构域自适应方法忽略了伪标签和类别预测中语义属性的重要性,导致分类精度不高,为此提出新的异构域自适应方法.该方法匹配源域和目标域的条件分布和边缘分布,考虑源数据和目标数据在公共特征子空间的相似性,... 在进行跨域知识迁移时,现有异构域自适应方法忽略了伪标签和类别预测中语义属性的重要性,导致分类精度不高,为此提出新的异构域自适应方法.该方法匹配源域和目标域的条件分布和边缘分布,考虑源数据和目标数据在公共特征子空间的相似性,通过细化空间相似性的伪标签来增强目标域伪标签的置信度,使模型的分类精度提高.考虑同类的样本经过分类器输出后有相似的预测分布,构造语义预测空间中的域鉴别器,使模型的泛化性提升.不同特征表示的文本和图像的分类任务实验结果成功地验证了所提方法的优越性. 展开更多
关键词 异构自适应 伪标签细化 语义预测空间 域鉴别器 语义对齐
下载PDF
融合全局与局部特征的跨数据集表情识别方法 被引量:1
2
作者 梁艳 温兴 潘家辉 《智能系统学报》 CSCD 北大核心 2023年第6期1205-1212,共8页
人脸表情数据集在收集过程中存在主观的标注差异和客观的条件差异,导致表情识别模型在不同数据集间呈现明显的性能差异。为了提高跨数据集表情识别精度、减少表情识别在实际应用中进行样本打标重训练的过程,本文提出了一种基于表情融合... 人脸表情数据集在收集过程中存在主观的标注差异和客观的条件差异,导致表情识别模型在不同数据集间呈现明显的性能差异。为了提高跨数据集表情识别精度、减少表情识别在实际应用中进行样本打标重训练的过程,本文提出了一种基于表情融合特征的域对抗网络模型,用于跨数据集人脸表情识别。采用残差神经网络提取人脸表情的全局特征与局部特征。利用Encoder模块对全局特征与局部特征进行融合,学习更深层次的表情信息。使用细粒度的域鉴别器进行源数据集与目标数据集对抗,对齐数据集的边缘分布和条件分布,使模型能迁移到无标签的目标数据集中。以RAF-DB为源数据集,以CK+、JAFFE、SFEW2.0、FER2013、Expw分别作为目标数据集进行跨数据集人脸表情识别实验。与其他跨数据集人脸表情识别算法相比,所提方法获得了最高的平均识别率。实验结果表明,所提方法能有效提高跨数据集人脸表情识别的性能。 展开更多
关键词 跨数据集 人脸表情识别 自适应 特征融合 自注意力机制 迁移学习 细粒度域鉴别器 残差网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部