The objectives of this study were to assess the potential of two photosynthetic bacteria (PSB), Rhodopseudomonas palustris HZ0301 and Rhodobacter sphaeroides HZ0302, as probiotics in aquaculture. The viability of HZ...The objectives of this study were to assess the potential of two photosynthetic bacteria (PSB), Rhodopseudomonas palustris HZ0301 and Rhodobacter sphaeroides HZ0302, as probiotics in aquaculture. The viability of HZ0301 and HZ0302 in simulated gastric transit conditions (pH 2.0, pH 3.0 and pH 4.0 gastric juices) and in simulated small intestinal transit conditions (pH 8.0, with or without 0.3% bile salts) was tested. The effects of HZ0301 and HZ0302 on the viability and permeability of intestinal epithelial cell in primary culture of tilapias, Oreochrornis nilotica, were also detected. All the treatments were deter- mined with three replicates. The simulated gastric transit tolerance of HZ0301 and HZ0302 strains was pH-dependent and correspondingly showed lower viability at pH 2.0 after 180 min compared with pH 3.0 and pH 4.0. Both HZ0301 and HZ0302 were tolerant to simulated small intestine transit with or without bile salts in our research. Moreover, there was no significant difference (P〉0.05) among three treatments including the control and the groups treated with HZ0301 or HZ0302 both in intestinal epithelial cell viability and membrane permeability, showing no cell damage. In summary, this study demonstrated that HZ0301 and HZ0302 had high capacity of upper gastrointestinal transit tolerance and were relatively safe for intestinal epithelial cells of tilapias.展开更多
基金Project (No. 30470021) supported by the National Natural Science Foundation of China
文摘The objectives of this study were to assess the potential of two photosynthetic bacteria (PSB), Rhodopseudomonas palustris HZ0301 and Rhodobacter sphaeroides HZ0302, as probiotics in aquaculture. The viability of HZ0301 and HZ0302 in simulated gastric transit conditions (pH 2.0, pH 3.0 and pH 4.0 gastric juices) and in simulated small intestinal transit conditions (pH 8.0, with or without 0.3% bile salts) was tested. The effects of HZ0301 and HZ0302 on the viability and permeability of intestinal epithelial cell in primary culture of tilapias, Oreochrornis nilotica, were also detected. All the treatments were deter- mined with three replicates. The simulated gastric transit tolerance of HZ0301 and HZ0302 strains was pH-dependent and correspondingly showed lower viability at pH 2.0 after 180 min compared with pH 3.0 and pH 4.0. Both HZ0301 and HZ0302 were tolerant to simulated small intestine transit with or without bile salts in our research. Moreover, there was no significant difference (P〉0.05) among three treatments including the control and the groups treated with HZ0301 or HZ0302 both in intestinal epithelial cell viability and membrane permeability, showing no cell damage. In summary, this study demonstrated that HZ0301 and HZ0302 had high capacity of upper gastrointestinal transit tolerance and were relatively safe for intestinal epithelial cells of tilapias.