Grain shape and size both determine grain weight and therefore crop yield. However, the molecular mechanisms controlling grain shape and size are still largely unknown. Here, we isolated a rice mutant, beak-shaped gra...Grain shape and size both determine grain weight and therefore crop yield. However, the molecular mechanisms controlling grain shape and size are still largely unknown. Here, we isolated a rice mutant, beak-shaped grain1 (bsgl), which produced beak-shaped grains of decreased width, thickness and weight with a loosely interlocked lemma and palea that were unable to close tightly. Starch granules were also irregularly packaged in the bsgl grains. Consistent with the lemma and palea shapes, the outer parenchyma cell layers of these bsgl tissues developed fewer cells with decreased size. Map-based cloning revealed that BSG1 encoded a DUF640 domain protein, TRIANGULAR HULL 1, of unknown function. Quantitative PCR and GUS fusion reporter assays showed that BSG1 was expressed mainly in the young panicle and elongating stem. The BSG1 mutation affected the expression of genes potentially involved in the cell cycle and GW2, an important regulator of grain size in rice. Our results suggest that BSG1 determines grain shape and size probably by modifying cell division and expansion in the grain hull.展开更多
This paper shows that the problem of minimizing a linear fractional function subject to asystem of sup-T equations with a continuous Archimedean triangular norm T can be reduced to a 0-1linear fractional optimization ...This paper shows that the problem of minimizing a linear fractional function subject to asystem of sup-T equations with a continuous Archimedean triangular norm T can be reduced to a 0-1linear fractional optimization problem in polynomial time.Consequently,parametrization techniques,e.g.,Dinkelbach's algorithm,can be applied by solving a classical set covering problem in each iteration.Similar reduction can also be performed on the sup-T equation constrained optimization problems withan objective function being monotone in each variable separately.This method could be extended aswell to the case in which the triangular norm is non-Archimedean.展开更多
A partition-of-unity (PU) based "FE-Meshfree" three-node triangular element (Trig3-RPIM) was recently developed for linear elastic problems. This Trig3-RPIM element employs hybrid shape functions that combine th...A partition-of-unity (PU) based "FE-Meshfree" three-node triangular element (Trig3-RPIM) was recently developed for linear elastic problems. This Trig3-RPIM element employs hybrid shape functions that combine the shape functions of three-node triangular element (Trig3) and radial-polynomial basis functions for the purpose of synergizing the merits of both finite element method and meshfree method. Although Trig3-RPIM element is capable of obtaining higher accuracy and convergence rate than the Trig3 element and four-node iso-parametric quadrilateral element without adding extra nodes or degrees of freedom (DOFs), the nodal stress field through Trig3-RP1M element is not continuous and extra stress smooth operations are still needed in the post processing stage. To further improve the property of Trig3-RPIM element, a new PU-based triangular element with continuous nodal stress, called Trig3-RPIMcns, is developed. Numerical examples including several linear, free vibration and forced vibration test problems, have confirmed the correctness and feasibility of the proposed Trig3-RPIMcns element.展开更多
基金supported by grants from the Chinese Academy of Sciences (KSCX2-EW-N-01)the National Natural Science Foundation of China (31100142,31071207)
文摘Grain shape and size both determine grain weight and therefore crop yield. However, the molecular mechanisms controlling grain shape and size are still largely unknown. Here, we isolated a rice mutant, beak-shaped grain1 (bsgl), which produced beak-shaped grains of decreased width, thickness and weight with a loosely interlocked lemma and palea that were unable to close tightly. Starch granules were also irregularly packaged in the bsgl grains. Consistent with the lemma and palea shapes, the outer parenchyma cell layers of these bsgl tissues developed fewer cells with decreased size. Map-based cloning revealed that BSG1 encoded a DUF640 domain protein, TRIANGULAR HULL 1, of unknown function. Quantitative PCR and GUS fusion reporter assays showed that BSG1 was expressed mainly in the young panicle and elongating stem. The BSG1 mutation affected the expression of genes potentially involved in the cell cycle and GW2, an important regulator of grain size in rice. Our results suggest that BSG1 determines grain shape and size probably by modifying cell division and expansion in the grain hull.
基金supported by the National Science Foundation of the United States under Grant No. #DMI- 0553310
文摘This paper shows that the problem of minimizing a linear fractional function subject to asystem of sup-T equations with a continuous Archimedean triangular norm T can be reduced to a 0-1linear fractional optimization problem in polynomial time.Consequently,parametrization techniques,e.g.,Dinkelbach's algorithm,can be applied by solving a classical set covering problem in each iteration.Similar reduction can also be performed on the sup-T equation constrained optimization problems withan objective function being monotone in each variable separately.This method could be extended aswell to the case in which the triangular norm is non-Archimedean.
基金the National Natural Science Foundation of China(Grant Nos.51609240,11572009&51538001)and the National Basic Research Program of China(Grant No.2014CB047100)
文摘A partition-of-unity (PU) based "FE-Meshfree" three-node triangular element (Trig3-RPIM) was recently developed for linear elastic problems. This Trig3-RPIM element employs hybrid shape functions that combine the shape functions of three-node triangular element (Trig3) and radial-polynomial basis functions for the purpose of synergizing the merits of both finite element method and meshfree method. Although Trig3-RPIM element is capable of obtaining higher accuracy and convergence rate than the Trig3 element and four-node iso-parametric quadrilateral element without adding extra nodes or degrees of freedom (DOFs), the nodal stress field through Trig3-RP1M element is not continuous and extra stress smooth operations are still needed in the post processing stage. To further improve the property of Trig3-RPIM element, a new PU-based triangular element with continuous nodal stress, called Trig3-RPIMcns, is developed. Numerical examples including several linear, free vibration and forced vibration test problems, have confirmed the correctness and feasibility of the proposed Trig3-RPIMcns element.