为了提高故障检测准确率,提出了基于动态受控主元分析(dynamic controlled principal component analysis,DCPCA)模型的故障检测方法。首先,利用DCPCA提取动态受控主元(dynamic controlled principal component,DCPC),所得DCPC包含过程...为了提高故障检测准确率,提出了基于动态受控主元分析(dynamic controlled principal component analysis,DCPCA)模型的故障检测方法。首先,利用DCPCA提取动态受控主元(dynamic controlled principal component,DCPC),所得DCPC包含过程的自回归特性和与控制输入之间的动态因果关系,使得构建的DCPCA模型更精确。然后,针对传统方法只对过程变量进行静态空间结构的故障检测,忽略了动态特性的问题,基于DCPCA模型适时应用检测综合指标,对系统进行静态重构误差和动态模型误差的双重检测,使得检测结果更全面。最后,基于田纳西-伊斯曼(Tennessee-Eastman,TE)过程的仿真结果验证了所提方法的可行性和有效性。展开更多
针对动态核主元分析(Dynamic Kernel Principal Component Analysis,DKPCA)在动态非线性过程监控中没有降低数据动态性的影响,导致统计量T^(2)具有显著自相关性的问题,提出一种基于去主元相关性的DKPCA(Dynamic Kernel Principal Compon...针对动态核主元分析(Dynamic Kernel Principal Component Analysis,DKPCA)在动态非线性过程监控中没有降低数据动态性的影响,导致统计量T^(2)具有显著自相关性的问题,提出一种基于去主元相关性的DKPCA(Dynamic Kernel Principal Component Analysis based on Removing Principal Component Correlation,DKPCA-RPCC)故障检测与诊断方法。首先,对原始数据X进行时滞扩展生成增广矩阵Y并使用KPCA计算主成分M;其次,利用已知数据重构增广矩阵Y,再使用KPCA计算主成分M;然后,通过主成分之间的差异来构建统计量进行故障检测;最后,利用基于变量贡献图的方法进行故障诊断。通过数值例子和田纳西-伊斯曼(Tennessee-Eastman,TE)过程进行仿真验证,并将仿真结果与KPCA、DPCA和DKPCA的结果进行对比。仿真结果说明,该方法在动态非线性过程监控中构建的统计量故障检测性能更高且具有较低的自相关性。展开更多
文摘为了提高故障检测准确率,提出了基于动态受控主元分析(dynamic controlled principal component analysis,DCPCA)模型的故障检测方法。首先,利用DCPCA提取动态受控主元(dynamic controlled principal component,DCPC),所得DCPC包含过程的自回归特性和与控制输入之间的动态因果关系,使得构建的DCPCA模型更精确。然后,针对传统方法只对过程变量进行静态空间结构的故障检测,忽略了动态特性的问题,基于DCPCA模型适时应用检测综合指标,对系统进行静态重构误差和动态模型误差的双重检测,使得检测结果更全面。最后,基于田纳西-伊斯曼(Tennessee-Eastman,TE)过程的仿真结果验证了所提方法的可行性和有效性。
文摘针对动态核主元分析(Dynamic Kernel Principal Component Analysis,DKPCA)在动态非线性过程监控中没有降低数据动态性的影响,导致统计量T^(2)具有显著自相关性的问题,提出一种基于去主元相关性的DKPCA(Dynamic Kernel Principal Component Analysis based on Removing Principal Component Correlation,DKPCA-RPCC)故障检测与诊断方法。首先,对原始数据X进行时滞扩展生成增广矩阵Y并使用KPCA计算主成分M;其次,利用已知数据重构增广矩阵Y,再使用KPCA计算主成分M;然后,通过主成分之间的差异来构建统计量进行故障检测;最后,利用基于变量贡献图的方法进行故障诊断。通过数值例子和田纳西-伊斯曼(Tennessee-Eastman,TE)过程进行仿真验证,并将仿真结果与KPCA、DPCA和DKPCA的结果进行对比。仿真结果说明,该方法在动态非线性过程监控中构建的统计量故障检测性能更高且具有较低的自相关性。