随着智能手机的普及和基于用户地理位置信息服务的增多,用户数据量呈爆发式增长,海量数据之间的稀疏性成为了限制基于位置社交网络(Location-Based Social Network,LBSN)的推荐系统性能的一个主要因素。基于此,文章提出了一个基于位置...随着智能手机的普及和基于用户地理位置信息服务的增多,用户数据量呈爆发式增长,海量数据之间的稀疏性成为了限制基于位置社交网络(Location-Based Social Network,LBSN)的推荐系统性能的一个主要因素。基于此,文章提出了一个基于位置社交网络的兴趣点组合推荐模型(Geographical LightGCN,GLGCN),该模型由协作偏好模块和地理偏好模块两部分组成,其中,协作偏好模块使用图卷积网络深度挖掘用户和兴趣点的嵌入表示,获取用户的协作偏好;地理偏好模块结合兴趣点的相关性和用户轨迹,使用基于门控循环单元(Gate Recurrent Unit,GRU)的序列模型捕获用户的序列偏好。文章将两个模块的推荐分数以线性加权的方式进行组合,得到最终推荐结果。实验表明,相较于现有其他算法,文章提出的组合推荐算法具有更优秀的性能。展开更多
随着基于位置社交网络(Location-Based Social Networks,LBSN)的快速发展,兴趣点(Point-of-Interest,POI)推荐为基于位置的服务提供了前所未有的机会.兴趣点推荐是一种基于上下文信息的位置感知的个性化推荐.然而用户-兴趣点矩阵的极端...随着基于位置社交网络(Location-Based Social Networks,LBSN)的快速发展,兴趣点(Point-of-Interest,POI)推荐为基于位置的服务提供了前所未有的机会.兴趣点推荐是一种基于上下文信息的位置感知的个性化推荐.然而用户-兴趣点矩阵的极端稀疏给兴趣点推荐的研究带来严峻挑战.为处理数据稀疏问题,文中利用兴趣点的地理、文本、社会、分类与流行度信息,并将这些因素进行有效地融合,提出一种上下文感知的概率矩阵分解兴趣点推荐算法,称为TGSC-PMF.首先利用潜在狄利克雷分配(Latent Dirichlet Allocation,LDA)模型挖掘兴趣点相关的文本信息学习用户的兴趣话题生成兴趣相关分数;其次提出一种自适应带宽核评估方法构建地理相关性生成地理相关分数;然后通过用户社会关系的幂律分布构建社会相关性生成社会相关分数;另外结合用户的分类偏好与兴趣点的流行度构建分类相关性生成分类相关分数,最后利用概率矩阵分解模型(Probabilistic Matrix Factorization,PMF),将兴趣、地理、社会、分类的相关分数进行有效地融合,从而生成推荐列表推荐给用户感兴趣的兴趣点.该文在一个真实LBSN签到数据集上进行实验,结果表明该算法相比其他先进的兴趣点推荐算法具有更好的推荐效果.展开更多
近年来,异质信息网络特别是基于位置的社交网络(Location-Based Social Networks,LBSN)中的社区发现已成为新兴的研究热点.然而,目前大多数社区发现研究仅考虑基于同质结构的社交网络,显然都已无法有效融合LBSN这种异质网络所包含的多...近年来,异质信息网络特别是基于位置的社交网络(Location-Based Social Networks,LBSN)中的社区发现已成为新兴的研究热点.然而,目前大多数社区发现研究仅考虑基于同质结构的社交网络,显然都已无法有效融合LBSN这种异质网络所包含的多模实体及其多维关系.为了应对该挑战性问题,本文提出了一种新的双重社区聚类与关联方法(Communities Clustering and Associating Method,CCAM),该方法先在LBSN的社交媒体层上,通过信息熵度量用户发布主题之间的相似性,进而再将相似用户兴趣聚类问题转换成求解基于模糊聚类的目标函数以获得重叠的兴趣主题簇结构.然后在地理位置层中,将用户-位置签到关系网络形成的二分图转换为超图模型,并采用超边聚类方式得到用户关于地理位置的兴趣点特征簇.最后,在兴趣主题簇与地理位置簇之间借助中间用户层的社交关系建立这两层异质簇间的关联性表示模型,并通过随机梯度下降法求解模型的局部最优解.在两个真实数据集Foursquare(NYC)和Yelp上的实验结果表明,本文提出的CCAM方法有效融合了用户-媒体发布关系、用户间社交关系、用户-位置签到关系等多维度关系,能准确获得LBSN中紧密关联的用户兴趣主题簇与地理位置簇,使得这双层社区结构不仅在外部结构特征与兴趣内聚性指标上都优于传统算法,并且还在兴趣主题推荐与位置兴趣点推荐方面的平均准确率提高至少32%.展开更多
文摘近年来,异质信息网络特别是基于位置的社交网络(Location-Based Social Networks,LBSN)中的社区发现已成为新兴的研究热点.然而,目前大多数社区发现研究仅考虑基于同质结构的社交网络,显然都已无法有效融合LBSN这种异质网络所包含的多模实体及其多维关系.为了应对该挑战性问题,本文提出了一种新的双重社区聚类与关联方法(Communities Clustering and Associating Method,CCAM),该方法先在LBSN的社交媒体层上,通过信息熵度量用户发布主题之间的相似性,进而再将相似用户兴趣聚类问题转换成求解基于模糊聚类的目标函数以获得重叠的兴趣主题簇结构.然后在地理位置层中,将用户-位置签到关系网络形成的二分图转换为超图模型,并采用超边聚类方式得到用户关于地理位置的兴趣点特征簇.最后,在兴趣主题簇与地理位置簇之间借助中间用户层的社交关系建立这两层异质簇间的关联性表示模型,并通过随机梯度下降法求解模型的局部最优解.在两个真实数据集Foursquare(NYC)和Yelp上的实验结果表明,本文提出的CCAM方法有效融合了用户-媒体发布关系、用户间社交关系、用户-位置签到关系等多维度关系,能准确获得LBSN中紧密关联的用户兴趣主题簇与地理位置簇,使得这双层社区结构不仅在外部结构特征与兴趣内聚性指标上都优于传统算法,并且还在兴趣主题推荐与位置兴趣点推荐方面的平均准确率提高至少32%.