期刊文献+
共找到2,188篇文章
< 1 2 110 >
每页显示 20 50 100
基于信息熵的精确属性赋权K-means聚类算法 被引量:37
1
作者 原福永 张晓彩 罗思标 《计算机应用》 CSCD 北大核心 2011年第6期1675-1677,共3页
为了进一步提高聚类的精确度,针对传统K-means算法的初始聚类中心产生方式和数据相似性判断依据,提出一种基于信息熵的精确属性赋权K-means聚类算法。首先利用熵值法对数据对象的属性赋权来修正对象间的欧氏距离,然后通过比较初聚类的... 为了进一步提高聚类的精确度,针对传统K-means算法的初始聚类中心产生方式和数据相似性判断依据,提出一种基于信息熵的精确属性赋权K-means聚类算法。首先利用熵值法对数据对象的属性赋权来修正对象间的欧氏距离,然后通过比较初聚类的赋权类别目标价值函数,选择高质量的初始聚类中心来进行更高精度和更加稳定的聚类,最后通过Matlab编程实现。实验证明该算法的聚类精确度和稳定性要明显高于传统K-means算法。 展开更多
关键词 k-means 精确度 信息熵 属性赋权 初始中心
下载PDF
采用混合策略联合优化的模糊C-均值聚类信息熵点云简化算法 被引量:1
2
作者 黄鹤 黄佳慧 +2 位作者 刘国权 王会峰 高涛 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第7期214-226,共13页
针对传统聚类算法处理点云简化问题时精度低、耗时长且易丢失特征信息等问题,提出了一种基于动态精英自适应混合策略的鹈鹕算法(DEAMPOA)与加权熵法联合优化的模糊C-均值聚类(FCM)信息熵点云简化算法。采用动态自适应种群混合策略,同时... 针对传统聚类算法处理点云简化问题时精度低、耗时长且易丢失特征信息等问题,提出了一种基于动态精英自适应混合策略的鹈鹕算法(DEAMPOA)与加权熵法联合优化的模糊C-均值聚类(FCM)信息熵点云简化算法。采用动态自适应种群混合策略,同时融合了精英反向化思路,显著提升了鹈鹕优化算法(POA)的收敛趋势和全局寻优能力,提高了寻找FCM最优聚类中心的成功率;利用DEAMPOA结合加权熵法对FCM进行优化,提高鲁棒性的同时增强了搜索精度,得到较好的聚类结果;在8种UCI标准数据集上与4种算法对比进行聚类性能评估实验,验证了所提方法综合性能优越;将所提方法与信息熵融合,并应用在三维点云KITTI数据集简化中。实验结果表明:与包围框简化法、随机采样简化法和特征选择简化法对比,所提方法全局误差简化前后点集之间平均欧式距离(MED)指标分别降低了2.25%、6.93%、5.74%,点云简化效果最优且运行速度满足要求。 展开更多
关键词 C-均值 鹈鹕优化算法 点云简化 信息熵
下载PDF
基于信息熵改进的K-means动态聚类算法 被引量:20
3
作者 杨玉梅 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2016年第2期254-259,共6页
初始聚类中心及聚类过程产生的冗余信息是影响K-means算法聚类性能的主要因素,也是阻碍该算法性能提升的主要问题。因此,提出一个改进的K-means算法。改进算法通过采用信息熵对聚类对象进行赋权来修正聚类对象间的距离函数,并利用初始... 初始聚类中心及聚类过程产生的冗余信息是影响K-means算法聚类性能的主要因素,也是阻碍该算法性能提升的主要问题。因此,提出一个改进的K-means算法。改进算法通过采用信息熵对聚类对象进行赋权来修正聚类对象间的距离函数,并利用初始聚类的赋权函数选出质量较高的初始聚类中心点;然后,为算法的终止条件设定标准阈值来减少算法迭代次数,从而减少学习时间;最后,通过删除由信息动态变化而产生的冗余信息来减少动态聚类过程中的干扰,以使算法达到更准确更高效的聚类效果。实验结果表明,当数据样本数量较多时,相比于传统的K-means算法和其他改进的K-means算法,提出的算法在准确率和执行效率上都有较大提升。 展开更多
关键词 k-means算法 信息熵 数据挖掘 动态
下载PDF
基于K-means聚类算法和信息熵的页面排序算法研究 被引量:1
4
作者 黄贤英 张金鹏 陈微微 《计算机工程与设计》 CSCD 北大核心 2013年第5期1695-1699,共5页
针对经典的PageRank算法存在的偏重历史网页、主题漂移、平分网页链接权重等缺陷,引入了向量空间模型和信息论中的信息熵,提出一种改进的PRKE算法。该算法用表征网页特征的关键词构成的向量来表示网页,用关键词在网页中所占的权重作为... 针对经典的PageRank算法存在的偏重历史网页、主题漂移、平分网页链接权重等缺陷,引入了向量空间模型和信息论中的信息熵,提出一种改进的PRKE算法。该算法用表征网页特征的关键词构成的向量来表示网页,用关键词在网页中所占的权重作为向量中各个分量的权值;对已存在的网页采用K-means聚类算法进行聚类,以信息熵的形式表征各个簇的权值,完成对网页的宏观排序;融入了时间因子和主题相关度等参数,完成对网页的微观排序。实验结果表明,改进的PRKE算法相对于经典的PageRank算法在首页命中率、检索准确性等方面获得了较大的提高。 展开更多
关键词 搜索引擎 PAGERANK算法 k-means算法 信息熵 页面排序
下载PDF
基于K-means聚类和特征空间增强的噪声标签深度学习算法 被引量:2
5
作者 吕佳 邱小龙 《智能系统学报》 CSCD 北大核心 2024年第2期267-277,共11页
深度学习中神经网络的性能依赖于高质量的样本,然而噪声标签会降低网络的分类准确率。为降低噪声标签对网络性能的影响,噪声标签学习算法被提出。该算法首先将训练样本集划分成干净样本集和噪声样本集,然后使用半监督学习算法对噪声样... 深度学习中神经网络的性能依赖于高质量的样本,然而噪声标签会降低网络的分类准确率。为降低噪声标签对网络性能的影响,噪声标签学习算法被提出。该算法首先将训练样本集划分成干净样本集和噪声样本集,然后使用半监督学习算法对噪声样本集赋予伪标签。然而,错误的伪标签以及训练样本数量不足的问题仍然限制着噪声标签学习算法性能的提升。为解决上述问题,提出基于K-means聚类和特征空间增强的噪声标签深度学习算法。首先,该算法利用K-means聚类算法对干净样本集进行标签聚类,并根据噪声样本集与聚类中心的距离大小筛选出难以分类的噪声样本,以提高训练样本的质量;其次,使用mixup算法扩充干净样本集和噪声样本集,以增加训练样本的数量;最后,采用特征空间增强算法抑制mixup算法新生成的噪声样本,从而提高网络的分类准确率。并在CIFAR10、CIFAR100、MNIST和ANIMAL-10共4个数据集上试验验证了该算法的有效性。 展开更多
关键词 噪声标签学习 深度学习 半监督学习 机器学习 神经网络 k-means 特征空间增强 mixup算法
下载PDF
基于改进K-means数据聚类算法的网络入侵检测 被引量:2
6
作者 黄俊萍 《成都工业学院学报》 2024年第2期58-62,97,共6页
随着入侵手段的不断更新和升级,传统入侵检测方法准确率下降、检测时间延长,无法满足网络防御要求。为此,提出一种经过改进K均值(K-means)数据聚类算法,以应对不断升级的网络入侵行为。先以防火墙日志为基础转换数值,然后基于粒子群算... 随着入侵手段的不断更新和升级,传统入侵检测方法准确率下降、检测时间延长,无法满足网络防御要求。为此,提出一种经过改进K均值(K-means)数据聚类算法,以应对不断升级的网络入侵行为。先以防火墙日志为基础转换数值,然后基于粒子群算法求取最优初始聚类中心,实现K-means数据聚类算法的改进;最后以计算得出的特征值为输入项,实现对网络入侵行为的精准检测。结果表明:K-means算法改进后较改进前的戴维森堡丁指数更小,均低于0.6,达到了改进目的。改进K-means算法各样本的准确率均高于90%,相对更高,检测时间均低于10 s,相对更少,说明该方法能够以高效率完成更准确的网络入侵检测。 展开更多
关键词 改进k-means数据算法 防火墙日志 入侵检测特征 粒子群算法 网络入侵检测
下载PDF
基于改进K-means聚类和遗传算法的混合算法求解异构车辆路径问题
7
作者 吴麟麟 吕一鸣 +1 位作者 何美玲 韩珣 《物流技术》 2024年第7期48-62,共15页
由于目前单一车型配送存在资源浪费和效率低下等问题,选取确定数量的不同车型对各客户点进行配送服务往往可以得到更优的配送路径方案。针对这一点,描述了一种异构车辆路径问题,并建立了具有固定车辆数且考虑固定成本、可变成本以及时... 由于目前单一车型配送存在资源浪费和效率低下等问题,选取确定数量的不同车型对各客户点进行配送服务往往可以得到更优的配送路径方案。针对这一点,描述了一种异构车辆路径问题,并建立了具有固定车辆数且考虑固定成本、可变成本以及时间窗惩罚成本的混合整数规划模型。同时,提出了一种基于改进K-means聚类和遗传算法的混合算法对模型进行求解。实验仿真先求解不考虑时间窗的问题初步证明混合算法的有效性,再在带时间窗的问题中求解不同规模算例的单一及异构车型结果,以证明异构车型配送更优。最后,对该混合算法的求解结果与其他混合算法的求解结果进行对比分析,证明了混合算法的优越性。研究结果表明:该混合算法求解的异构车型结果优于单一车型,并且比其他混合算法求解的异构车型结果更优,异构车辆配送使用的配送车辆数更少,总成本也更低,该混合算法具有更好的效率和性能。 展开更多
关键词 异构车辆路径问题 改进k-means算法 遗传算法 混合算法
下载PDF
基于蚁群算法的三支k-means聚类算法
8
作者 朱金 徐天杰 王平心 《江苏科技大学学报(自然科学版)》 CAS 2024年第3期63-69,共7页
在聚类分析中,三支k-means聚类算法较具有较强的处理边界不确定数据的能力,但仍然存在对初始聚类中心敏感的问题.通过将蚁群算法和三支k-means聚类算法相结合,给出了一种基于蚁群算法的三支k-means聚类算法来解决这一问题.利用蚁群算法... 在聚类分析中,三支k-means聚类算法较具有较强的处理边界不确定数据的能力,但仍然存在对初始聚类中心敏感的问题.通过将蚁群算法和三支k-means聚类算法相结合,给出了一种基于蚁群算法的三支k-means聚类算法来解决这一问题.利用蚁群算法中随机概率选择策略和信息素的正负反馈机制,动态调整权重的方法,对三支k-means聚类算法进行优化.在UCI数据集上实验证明,该方法对聚类结果的性能指标有所提高. 展开更多
关键词 三支k-means k-means算法 中心 蚁群算法
下载PDF
启发式k-means聚类算法的改进研究
9
作者 殷丽凤 栗庆杰 《大连交通大学学报》 CAS 2024年第2期115-119,共5页
启发式k-means聚类算法通过在k-means第一次迭代后查看附近的集群来预测每个数据点可能会被划分到的集群子集,有效地加快了算法的运行速度。但由于启发式算法存在随机选择初始聚类中心以及无法有效识别数据集中离群点的缺陷,导致聚类结... 启发式k-means聚类算法通过在k-means第一次迭代后查看附近的集群来预测每个数据点可能会被划分到的集群子集,有效地加快了算法的运行速度。但由于启发式算法存在随机选择初始聚类中心以及无法有效识别数据集中离群点的缺陷,导致聚类结果的误差平方和较大并且轮廓系数偏小。针对这一问题,提出了CHk-means算法,该算法引入仔细播种方法,克服了启发式k-means算法随机选择初始聚类中心带来的局部最优解问题;该算法引入局部异常因子LOF算法对离群点进行检测,降低了离群点数据对聚类结果的影响。在多个数据集上对3种算法进行对比试验,结果表明CHk-means算法可有效降低聚类结果的误差平方和,增强聚类的轮廓系数,使聚类质量得到明显改善。 展开更多
关键词 算法 k-means 启发式算法 仔细播种 局部异常因子 离群点
下载PDF
一种融合乌鸦搜索算法的K-means聚类算法
10
作者 高海宾 《新乡学院学报》 2024年第3期19-25,共7页
传统的K-均值聚类算法(K-means)对初始聚类中心的选择敏感,容易陷入局部最优解,并且需要预先设定聚类数量K,这在实际操作中往往难以实现。为了解决这些问题,提出了一种融合乌鸦搜索算法的K-means聚类算法。该算法利用乌鸦搜索算法的全... 传统的K-均值聚类算法(K-means)对初始聚类中心的选择敏感,容易陷入局部最优解,并且需要预先设定聚类数量K,这在实际操作中往往难以实现。为了解决这些问题,提出了一种融合乌鸦搜索算法的K-means聚类算法。该算法利用乌鸦搜索算法的全局搜索能力,自动确定最佳的聚类数目K,从而提高聚类的质量和效率。通过在Seeds数据集进行实验计算卡林斯基-哈拉巴斯(Calinski-Harabasz)指数等评价指标,发现该算法聚类效果明显优于传统的K-means算法。 展开更多
关键词 k-means算法 乌鸦搜索算法 Calinski-Harabasz指数
下载PDF
基于改进K-means聚类算法的网络异常数据挖掘与分类方法
11
作者 贺萌 《无线互联科技》 2024年第18期119-122,共4页
为了解决网络异常数据挖掘过程中漏报率、误报率较高的问题,文章提出一种基于改进K-means聚类算法的网络异常数据挖掘与分类方法。文章通过构建并行化频繁项集挖掘环境加速数据处理,利用局部离群点检测剔除异常值,同时引入K-means聚类... 为了解决网络异常数据挖掘过程中漏报率、误报率较高的问题,文章提出一种基于改进K-means聚类算法的网络异常数据挖掘与分类方法。文章通过构建并行化频繁项集挖掘环境加速数据处理,利用局部离群点检测剔除异常值,同时引入K-means聚类对数据的最大最小距离展开计算,融合隶属度函数与密度峰值优化算法,改进聚类初始中心选择及簇边界调整,从而提高异常识别准确性和分类效率。通过实验结果证明,该方法能够明显改善聚类效果与性能。 展开更多
关键词 k-means算法 网络异常 数据挖掘 数据分 离群点检测
下载PDF
基于优化K-means算法的高校成绩聚类分析研究 被引量:1
12
作者 张梁 杨立波 +1 位作者 张小勇 史俊冰 《太原学院学报(自然科学版)》 2024年第2期79-84,共6页
针对经典K均值算法在聚类中心易受异常值影响,导致聚类结果不稳定的问题,提出基于样本分布密度的优化K-means算法,以提高聚类稳定性和准确性;聚类后通过CH指数和分类区间占比总体两种方法,客观评价3种离散化方法,结果表明,优化的K-mean... 针对经典K均值算法在聚类中心易受异常值影响,导致聚类结果不稳定的问题,提出基于样本分布密度的优化K-means算法,以提高聚类稳定性和准确性;聚类后通过CH指数和分类区间占比总体两种方法,客观评价3种离散化方法,结果表明,优化的K-means算法避免了区间分类不合理现象,更加准确地反映了成绩样本的分布特点。 展开更多
关键词 均值算法 分布密度 k-means
下载PDF
一种基于改进差分进化的K-Means聚类算法研究
13
作者 刘红达 王福顺 +3 位作者 孙小华 张广辉 王斌 何振学 《现代电子技术》 北大核心 2024年第18期156-162,共7页
为改进传统K-Means聚类算法中因随机选取初始聚类中心而导致聚类结果不稳定且效率低的缺点,提出一种基于改进差分进化的K-Means聚类算法(AGDE-KM)。首先,设计自适应操作算子来提升算法前期的全局搜索能力和后期的收敛速度;其次,设计多... 为改进传统K-Means聚类算法中因随机选取初始聚类中心而导致聚类结果不稳定且效率低的缺点,提出一种基于改进差分进化的K-Means聚类算法(AGDE-KM)。首先,设计自适应操作算子来提升算法前期的全局搜索能力和后期的收敛速度;其次,设计多变异策略并引入权重系数,在算法的不同进化阶段发挥不同变异策略的优势,平衡算法的全局和局部搜索能力,加快算法的收敛速度;最后,提出一种基于当前种群最佳个体的高斯扰动交叉操作,为个体提供更优进化方向的同时保持种群在“维”上的多样性,避免算法陷入局部最优。将算法停止执行时输出的最优解作为初始聚类中心替代传统K-Means随机选取的聚类中心。将提出算法在UCI公共数据库中的Vowel、Iris、Glass数据集和合成数据集Jcdx上进行对比实验,误差平方和(SSE)相对于传统K-Means分别减小5.65%、19.59%、13.31%、6.1%,聚类时间分别减少83.03%、81.33%、77.47%、92.63%。实验结果表明,提出的改进算法具有更快的收敛速度和更好的寻优能力,显著提升了聚类的效果、效率和稳定性。 展开更多
关键词 k-means算法 差分进化算法 多变异策略 高斯扰动 UCI数据库 中心优化
下载PDF
基于K-means聚类的多种群麻雀搜索算法 被引量:2
14
作者 闫少强 刘卫东 +2 位作者 杨萍 吴丰轩 阎哲 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第2期508-518,共11页
为改善麻雀搜索算法(SSA)在单种群搜索中收敛速度过快导致其收敛速度出现冗余,易忽略优质解而陷入局部最优的缺陷,提出一种基于K-means聚类的多种群麻雀搜索算法(KSSA)。将多种群机制引入SSA,减弱单种群的收敛能力,并减小陷入局部最优... 为改善麻雀搜索算法(SSA)在单种群搜索中收敛速度过快导致其收敛速度出现冗余,易忽略优质解而陷入局部最优的缺陷,提出一种基于K-means聚类的多种群麻雀搜索算法(KSSA)。将多种群机制引入SSA,减弱单种群的收敛能力,并减小陷入局部最优的概率;采用K-means聚类划分子种群,增加子种群间的差异性,同时使子种群内个体在小范围内专注搜索,提升前期搜索效率;借助加权重心交流策略改善种群间交流的质量,减少自身种群的干扰,同时消减因某一子种群陷入局部最优而导致所有子种群陷入局部最优的风险;引入动态反向学习到警戒者中,增强其反捕食行为,改善因子种群数量增加而带来的收敛速度变慢和收敛精度不足的缺陷。经测试函数仿真实验表明:较SSA等算法,KSSA具有更优的寻优性能。 展开更多
关键词 麻雀搜索算法 优化算法 多种群 k-means 种群交流
下载PDF
基于融合改进K-means聚类算法的数据检测技术 被引量:3
15
作者 郭克难 《电子设计工程》 2024年第5期41-45,共5页
针对现有医疗财务数据分析系统平台老旧,采用传统K-means算法进行数据处理时性能较差的问题,文中设计了一种财务异常数据检测算法。对于传统K-means算法存在的分类效果不佳、运行效率偏低等不足,该算法结合密度峰值法对样本点的局部密... 针对现有医疗财务数据分析系统平台老旧,采用传统K-means算法进行数据处理时性能较差的问题,文中设计了一种财务异常数据检测算法。对于传统K-means算法存在的分类效果不佳、运行效率偏低等不足,该算法结合密度峰值法对样本点的局部密度和高密度距离进行计算,进而优化簇中心的选择。同时融合PCA降维算法减少了数据的冗余信息,进一步提高了运行效率。通过引入LOF离群检测算法对分簇后的数据进行检测,从而得到异常数据结果。实验测试中,所提算法在人工数据集上的平均ARI指标为0.844,真实数据集的准确率则达到了79.2%,在所有对比算法中均为最优,表明该算法具有良好的性能,可以对财务异常数据进行准确地检测。 展开更多
关键词 k-means 密度峰值检测 主成分分析法 离群检测算法 异常数据检测
下载PDF
基于K-means聚类和极限学习机组合算法的短期光伏功率预测 被引量:2
16
作者 黄牧涛 邢芳菲 +1 位作者 陈兴邦 卢明 《水电能源科学》 北大核心 2024年第2期217-220,216,共5页
考虑光伏功率的预测精度强依赖于天气模态和气候条件等因素影响,提出了基于极限学习机组合算法的短期光伏功率预测方法。首先,基于K-means聚类算法进行天气分型,分为4个季节下晴天、多云天气、阴雨天气共12组不同天气类别。其次,针对天... 考虑光伏功率的预测精度强依赖于天气模态和气候条件等因素影响,提出了基于极限学习机组合算法的短期光伏功率预测方法。首先,基于K-means聚类算法进行天气分型,分为4个季节下晴天、多云天气、阴雨天气共12组不同天气类别。其次,针对天气分型结果,基于极限学习机ELM、遗传算法改进的极限学习机GA-ELM、鸟群算法改进的极限学习机BSA-ELM3种算法构建光伏功率预测模型。最后,以某光伏电站数据进行所提模型验证。预测结果表明,BSA-ELM预测精度最高,12种天气预测精度达到90%左右,各季节中预测精度最高的天气类型均为晴天,多云天气精度高于阴雨天气精度,可为含高比例光伏并网的新型电力系统安全稳定运行提供有效数据支撑。 展开更多
关键词 光伏发电功率预测 k-means 天气分型 极限学习机算法 遗传算法 鸟群算法
下载PDF
基于平均密度优化初始聚类中心的k-means算法 被引量:32
17
作者 邢长征 谷浩 《计算机工程与应用》 CSCD 2014年第20期135-138,共4页
现有的基于密度优化初始聚类中心的k-means算法存在聚类中心的搜索范围大、消耗时间久以及聚类结果对孤立点敏感等问题,针对这些问题,提出了一种基于平均密度优化初始聚类中心的k-means算法adk-means。该算法将数据集中的孤立点划分出来... 现有的基于密度优化初始聚类中心的k-means算法存在聚类中心的搜索范围大、消耗时间久以及聚类结果对孤立点敏感等问题,针对这些问题,提出了一种基于平均密度优化初始聚类中心的k-means算法adk-means。该算法将数据集中的孤立点划分出来,计算出剩余数据集样本的平均密度,孤立点不参与聚类过程中各类所含样本均值的计算;在大于平均密度的密度参数集合中选择聚类中心,根据最小距离原则将孤立点分配给离它最近的聚类中心,直至将数据集完整分类。实验结果表明,这种基于平均密度优化初始聚类中心的k-means算法比现有的基于密度的k-means算法有更快的收敛速度,更强的稳定性及更高的聚类精度,消除了聚类结果对孤立点的敏感性。 展开更多
关键词 k-means算法 中心 平均密度 孤立点 收敛
下载PDF
电网需求侧资源动态分布式k-means聚类算法 被引量:2
18
作者 黄静 饶尧 刘政 《大连交通大学学报》 CAS 2024年第2期109-114,共6页
为有效聚合电网需求侧资源,合理、高效利用电网资源,提出基于分布式k-means的电网需求侧资源动态聚类算法。通过基于置信半径的分布式k-means算法聚类采集到的电网需求侧资源数据,在模糊C均值进化神经网络中,以聚类得到的电网需求侧资... 为有效聚合电网需求侧资源,合理、高效利用电网资源,提出基于分布式k-means的电网需求侧资源动态聚类算法。通过基于置信半径的分布式k-means算法聚类采集到的电网需求侧资源数据,在模糊C均值进化神经网络中,以聚类得到的电网需求侧资源数据为输入向量,输出电网需求侧资源场景,依据场景存在概率,以电网侧资源日均峰谷差最小、DG消纳程度最高与日均负荷波动率最小为目标函数,以电网需求侧资源曲线波动率与负荷互补为约束条件,构建电网需求侧资源多场景聚类模型,经动态改变惯性因子(DCW)粒子群算法求解模型后,实现电网需求侧资源多场景聚类。试验结果表明:该方法可实现电网需求侧资源动态聚类,应用该方法聚类不同场景电网需求侧资源时的日负荷率较低,聚类效果较好,可满足实际电力需求侧资源动态聚类工作的需要。 展开更多
关键词 电网需求 侧资源 动态 分布式 k-means算法 模型
下载PDF
基于彩色和深度信息结合K-means聚类算法快速拼接植株图像 被引量:11
19
作者 沈跃 朱嘉慧 +2 位作者 刘慧 崔业民 张炳南 《农业工程学报》 EI CAS CSCD 北大核心 2018年第23期134-141,共8页
图像拼接可以建立宽视角的高分辨率图像,对实现农业智能化有重要作用。基于Kinect传感器的图像拼接方法利用彩色和深度双源信息,能够有效避免图像缺失、亮暗差异、重影等拼接错误,但是存在拼接时间较长和目标植株不明显等情况。针对这... 图像拼接可以建立宽视角的高分辨率图像,对实现农业智能化有重要作用。基于Kinect传感器的图像拼接方法利用彩色和深度双源信息,能够有效避免图像缺失、亮暗差异、重影等拼接错误,但是存在拼接时间较长和目标植株不明显等情况。针对这一问题,该文提出一种基于Kinect传感器彩色和深度信息的目标植株图像快速拼接方法。首先用K-means聚类算法和植株深度信息提取彩色图像中有效植株区域,再采用SURF(speeded up robust features)算法进行特征点提取,利用相似性度量进行特征点匹配并根据植株深度数据去除误匹配,由RANSAC(randomsampleconsensus)算法寻找投影变换矩阵,最后采用基于缝合线算法的多分辨率图像融合方法进行拼接。室内外试验结果表明:该文图像拼接方法更能突显出目标植株且极大缩短了拼接时间,该方法图像拼接时间只需3.52 s(室内)和7.11 s(室外),较基于深度和彩色双信息特征源的Kinect植物图像拼接方法时间缩短了8.62 s(室内)和38.56 s(室外),且平均匹配准确率达96.8%。该文拼接后图像信息熵、清晰度、互信息、空间频率平均分别为6.34、50.36、11.70、11.28,图像质量较传统方法均有提高。该研究可为监测农业植株生长状态、精确喷洒药物提供参考。 展开更多
关键词 图像处理 算法 机器视觉 k-means SURF算法 图像融合 彩色和深度信息
下载PDF
一种基于密度的k-means聚类算法 被引量:12
20
作者 罗军锋 锁志海 《微电子学与计算机》 CSCD 北大核心 2014年第10期28-31,共4页
针对k-means算法中对初始聚类中心和孤立点敏感的缺点,提出一种基于密度的改进k-means算法.该算法引入信息熵和加权距离,从近邻密度出发,去除孤立点对算法的影响,同时确定初始聚类中心,使得聚类中心相对稳定.实验表明,该算法在准确性、... 针对k-means算法中对初始聚类中心和孤立点敏感的缺点,提出一种基于密度的改进k-means算法.该算法引入信息熵和加权距离,从近邻密度出发,去除孤立点对算法的影响,同时确定初始聚类中心,使得聚类中心相对稳定.实验表明,该算法在准确性、运行效率上均有10%以上的提升. 展开更多
关键词 k-means 信息熵 近邻密度 孤立点
下载PDF
上一页 1 2 110 下一页 到第
使用帮助 返回顶部