期刊文献+
共找到54篇文章
< 1 2 3 >
每页显示 20 50 100
贝壳形屋盖风压系数密度峰值聚类分区研究
1
作者 林拥军 周畅 +2 位作者 张曾鹏 余国菲 谢远昂 《建筑科学与工程学报》 北大核心 2024年第1期158-170,共13页
鉴于贝壳形屋盖表面风压分布的特殊性,提出基于快速搜索技术的密度峰值聚类风压系数分区方法。以某贝壳形屋盖表面风压分布试验结果为基础,进行密度峰值聚类风压系数分区,采用SD有效性指标验证分区数的合理性,并与改进k-means聚类分区... 鉴于贝壳形屋盖表面风压分布的特殊性,提出基于快速搜索技术的密度峰值聚类风压系数分区方法。以某贝壳形屋盖表面风压分布试验结果为基础,进行密度峰值聚类风压系数分区,采用SD有效性指标验证分区数的合理性,并与改进k-means聚类分区结果进行对比。结果表明:密度峰值聚类风压系数分区以风压系数相对距离、局部密度和综合指数为特征参数,能较好反映屋面风压分布特性,有效保证类聚合性和类类分离性;相较于改进k-means分区法,不同风向角下密度峰值聚类得到的分区数与SD最优聚类数接近;密度峰值聚类分区结果能更准确反映贝壳形屋盖表面风压分布特性,充分体现测点风压系数局部密度和相对距离特征值较大的基本原则,对于贝壳形屋盖的风压系数分区具有更好的适用性;贝壳形屋盖密度峰值聚类分区最大负风压系数在-0.59~-1.74之间。 展开更多
关键词 密度峰值 快速搜索 风压系数分区 贝壳形屋盖
下载PDF
一种基于参考点和密度的快速聚类算法 被引量:108
2
作者 马帅 王腾蛟 +2 位作者 唐世渭 杨冬青 高军 《软件学报》 EI CSCD 北大核心 2003年第6期1089-1095,共7页
数据的规模越来越大,要求数据挖掘算法有很高的执行效率.基于密度的聚类是聚类分析中的一种,其主要优点是发现任意形状的聚类和对噪音数据不敏感.提出了一种新的基于参考点和密度的CURD(clustering using references and density)聚类算... 数据的规模越来越大,要求数据挖掘算法有很高的执行效率.基于密度的聚类是聚类分析中的一种,其主要优点是发现任意形状的聚类和对噪音数据不敏感.提出了一种新的基于参考点和密度的CURD(clustering using references and density)聚类算法,其创新点在于,通过参考点来准确地反映数据的空间几何特征,然后基于参考点对数据进行分析处理.CURD算法保持了基于密度的聚类算法的上述优点,而且CURD算法具有近似线性的时间复杂性,因此CURD算法适合对大规模数据的挖掘.理论分析和实验结果也证明了CURD算法具有处 理任意形状的聚类、对噪音数据不敏感的特点,并且其执行效率明显高于传统的基于R*-树的DBSCAN算法. 展开更多
关键词 快速算法 密度 高维 参考点 数据挖掘
下载PDF
一种基于密度的快速聚类算法 被引量:89
3
作者 周水庚 周傲英 +1 位作者 曹晶 胡运发 《计算机研究与发展》 EI CSCD 北大核心 2000年第11期1287-1292,共6页
聚类是数据挖掘领域中的一个重要研究方向 .聚类技术在统计数据分析、模式识别、图像处理等领域有广泛应用 .迄今为止人们提出了许多用于大规模数据库的聚类算法 .基于密度的聚类算法 DBSCAN就是一个典型代表 .以 DBSCAN为基础 ,提出了... 聚类是数据挖掘领域中的一个重要研究方向 .聚类技术在统计数据分析、模式识别、图像处理等领域有广泛应用 .迄今为止人们提出了许多用于大规模数据库的聚类算法 .基于密度的聚类算法 DBSCAN就是一个典型代表 .以 DBSCAN为基础 ,提出了一种基于密度的快速聚类算法 .新算法以核心对象邻域中所有对象的代表对象为种子对象来扩展类 ,从而减少区域查询次数 ,降低 I/ O开销 ,实现快速聚类 .对二维空间数据测试表明 :快速算法能够有效地对大规模数据库进行聚类 ,速度上数倍于已有 DBSCAN算法 . 展开更多
关键词 数据挖掘 密度 快速算法 数据库
下载PDF
基于改进快速密度峰值算法的电力负荷曲线聚类分析 被引量:24
4
作者 陈俊艺 丁坚勇 +4 位作者 田世明 卜凡鹏 朱炳翔 黄事成 周凯 《电力系统保护与控制》 EI CSCD 北大核心 2018年第20期85-93,共9页
为解决传统聚类算法对大数据背景下高维海量、类簇形状差异巨大的电力负荷曲线进行聚类分析时存在的聚类结果不稳定、聚类效果较差、聚类速度慢和内存消耗过大等问题,提出一种改进的快速密度峰值聚类算法。首先应用主成分分析法对归一... 为解决传统聚类算法对大数据背景下高维海量、类簇形状差异巨大的电力负荷曲线进行聚类分析时存在的聚类结果不稳定、聚类效果较差、聚类速度慢和内存消耗过大等问题,提出一种改进的快速密度峰值聚类算法。首先应用主成分分析法对归一化后的负荷曲线集进行降维处理,以减少样本向量间欧式距离的计算量和加快后续操作。然后利用kd树算法对降维后的数据进行快速K近邻搜索生成KNN矩阵。最后以KNN矩阵代替原算法的距离矩阵作为输入数据。在基于KNN改进的样本局部密度和距离计算准则的基础上,运用快速密度峰值算法对负荷曲线进行聚类分析。通过实验和算例分析验证了所提改进算法的实用性和有效性。 展开更多
关键词 电力大数据 负荷曲线 快速密度峰值算法 主成分分析 KD树 KNN算法
下载PDF
结合双树复小波变换和改进密度峰值快速搜索聚类的乳腺MR图像分割 被引量:13
5
作者 范虹 张程程 +2 位作者 侯存存 朱艳春 姚若侠 《电子学报》 EI CAS CSCD 北大核心 2019年第10期2149-2157,共9页
针对乳腺MR图像组织复杂、灰度不均匀、难分割的特点,本文提出双树复小波(DTCWT)变换结合密度聚类的图像分割方法.首先利用复小波域双变量模型结合各向异性扩散函数对图像进行去噪处理;进而通过简单线性迭代聚类(SLIC)算法将图像划分成... 针对乳腺MR图像组织复杂、灰度不均匀、难分割的特点,本文提出双树复小波(DTCWT)变换结合密度聚类的图像分割方法.首先利用复小波域双变量模型结合各向异性扩散函数对图像进行去噪处理;进而通过简单线性迭代聚类(SLIC)算法将图像划分成一定数量的超像素区域,根据事先设置的阈值搜索每个超像素的近邻,从而降低基于K近邻的密度峰值快速搜索聚类(KNN-DPC)算法寻找每个样本近邻的时间;最终,引入超像素区域的近邻信息度量样本密度,采用KNN-DPC算法的分配策略自适应聚类.仿真和临床数据分割结果表明,所提算法能有效的实现乳腺MR图像的分割. 展开更多
关键词 乳腺MR图像分割 双树复小波变换 双变量模型 超像素分 密度峰值快速搜索
下载PDF
“密度-距离”快速搜索聚类算法及其在共词聚类中的应用 被引量:8
6
作者 李秀霞 邵作运 《情报学报》 CSSCI 北大核心 2016年第4期380-388,共9页
"密度-距离"快速搜索聚类算法的核心思想是:聚为一类的核心节点的密度最大,核心节点与其他密度更大的节点之间的距离相对更大。为丰富文献计量学的方法体系,本文将该算法引入到共词聚类分析中。以"学科服务"为研究... "密度-距离"快速搜索聚类算法的核心思想是:聚为一类的核心节点的密度最大,核心节点与其他密度更大的节点之间的距离相对更大。为丰富文献计量学的方法体系,本文将该算法引入到共词聚类分析中。以"学科服务"为研究主题,利用Bicomb形成共词矩阵,在Matlab环境中将其转换为三元组相似距离表,最后利用"密度一距离"快速搜索聚类算法将学科服务研究主题自动确定为5个研究类团,并给出了对应的类中心、实现了聚类结果的可视化。与已有工具软件(如SPSS、Ucinet、Citespace)内嵌的聚类算法的聚类效果相比,本文方法最大的优势是不需要进行多次迭代,耗时少;自动确定聚类中心的类名、类团的数目等;而且聚类结果理想,可视化效果较好。 展开更多
关键词 密度-距离 快速搜索 分析 共词
下载PDF
基于密度峰值快速搜索聚类的多场景分布式电源规划 被引量:6
7
作者 武晓朦 时政 +3 位作者 付子义 刘欣雨 党建 李飞 《河南理工大学学报(自然科学版)》 CAS 北大核心 2022年第2期117-123,共7页
针对间歇性分布式电源出力的随机性、负荷需求的不确定性以及分布式电源与负荷之间存在相关性的问题,采用拉丁超立方抽样并结合Spearman秩相关系数的Cholesky分解,得到分布式电源具有相关性的出力与负荷需求样本。通过密度峰值快速搜索... 针对间歇性分布式电源出力的随机性、负荷需求的不确定性以及分布式电源与负荷之间存在相关性的问题,采用拉丁超立方抽样并结合Spearman秩相关系数的Cholesky分解,得到分布式电源具有相关性的出力与负荷需求样本。通过密度峰值快速搜索聚类算法对相关性样本进行有效削减得到典型场景,以分布式电源投资运行费用和配电网向上级电网购电费用最小为优化目标,建立分布式电源多目标规划模型。最后通过二阶锥松弛将规划模型转化为混合整数二阶锥规划问题,并调用Cplex求解器对规划模型求解。IEEE 33节点算例结果验证了所提模型的合理性。 展开更多
关键词 分布式电源规划 Spearman秩相关系数 密度峰值快速搜索 二阶锥规划
下载PDF
快速搜索密度峰值聚类在图像检索中的应用 被引量:5
8
作者 王华秋 聂珍 《计算机工程与设计》 北大核心 2016年第11期3045-3050,3057,共7页
为缩减图像检索和匹配范围,提高检索速度和准确率,将快速搜索密度峰值聚类用于对图像,按照特征相似性原则进行聚类,在类中心和最接近的一类中进行图像检索。考虑到传统的图像特征提取算法忽略了图像颜色的空间分布信息,提取的特征信息... 为缩减图像检索和匹配范围,提高检索速度和准确率,将快速搜索密度峰值聚类用于对图像,按照特征相似性原则进行聚类,在类中心和最接近的一类中进行图像检索。考虑到传统的图像特征提取算法忽略了图像颜色的空间分布信息,提取的特征信息无法突出感兴趣的图像区域,通过等面积矩形环对图像进行划分并计算各空间区域的相关性,根据空间区域相关性计算各区域的重要性,将空间信息与颜色信息进行融合;对聚类算法的截断距离进行合理改进,保证了聚类的精度;将该密度峰值聚类算法应用于图像检索之中。对比实验结果表明,所提聚类算法和空间特征提取方法提高了图像检索的效率和准确性。 展开更多
关键词 快速搜索 密度峰值 截断距离 空间相关性 图像检索
下载PDF
基于快速搜索与发现密度峰值聚类算法的含有分布式光伏的配电网电压分区协调控制 被引量:16
9
作者 张赟宁 石泽 《现代电力》 北大核心 2020年第1期35-41,共7页
随着大量分布式光伏并入配电网,重要负荷节点电压越限的紧急情况更容易发生,这对当前潮流状态下电压控制的快速性提出了更高的要求。考虑电压集中控制方式控制过程复杂且传统的分区方法耗时较长等问题,首先以节点间的综合电压灵敏度为... 随着大量分布式光伏并入配电网,重要负荷节点电压越限的紧急情况更容易发生,这对当前潮流状态下电压控制的快速性提出了更高的要求。考虑电压集中控制方式控制过程复杂且传统的分区方法耗时较长等问题,首先以节点间的综合电压灵敏度为基础计算节点电气距离,根据电气距离构建节点相似度矩阵,并采用快速搜索与发现密度峰值聚类算法对配电网进行快速分区;然后考虑本地光伏独立调压能力的不足,提出了一种先无功后有功的电压分区协调控制策略;最后通过IEEE33配电网算例的仿真结果验证了该分区方法的快速性和电压分区协调控制策略的有效性。 展开更多
关键词 电压集中控制 综合电压灵敏度 电气距离 快速搜索与发现密度峰值 电压分区协调控制
下载PDF
基于快速密度峰值聚类的多扩展目标跟踪算法 被引量:2
10
作者 姚敏 《内蒙古师范大学学报(自然科学汉文版)》 CAS 2018年第4期282-286,共5页
为降低杂波对量测集划分的影响,提出了一种基于快速密度峰值聚类的多扩展目标跟踪算法.首先分析不同分区对跟踪结果的影响,得到最"信息"分区的形式,然后利用快速密度峰值聚类(FDPC)算法对量测集进行划分,减少杂波对量测集划... 为降低杂波对量测集划分的影响,提出了一种基于快速密度峰值聚类的多扩展目标跟踪算法.首先分析不同分区对跟踪结果的影响,得到最"信息"分区的形式,然后利用快速密度峰值聚类(FDPC)算法对量测集进行划分,减少杂波对量测集划分的影响.实验结果表明,所提算法能够有效抑制杂波的影响,在保证跟踪性能损失不大的情况下大大提高了算法的计算效率,具有较好的应用价值. 展开更多
关键词 快速密度峰值 多扩展目标跟踪 分区 概率假设密度滤波 跟踪算法
下载PDF
基于谱分析的密度峰值快速聚类算法
11
作者 韩忠华 毕开元 +1 位作者 司雯 吕哲 《计算机应用》 CSCD 北大核心 2019年第2期409-413,共5页
针对密度峰值快速聚类(CFSFDP)算法对不同数据集聚类效果的差异,利用谱聚类对密度峰值快速聚类算法加以改进,提出了一种基于谱分析的密度峰值快速聚类算法CFSFDP-SA。首先,将高维非线性的数据集映射到低维子空间上实现降维处理,将聚类... 针对密度峰值快速聚类(CFSFDP)算法对不同数据集聚类效果的差异,利用谱聚类对密度峰值快速聚类算法加以改进,提出了一种基于谱分析的密度峰值快速聚类算法CFSFDP-SA。首先,将高维非线性的数据集映射到低维子空间上实现降维处理,将聚类问题转化为图的最优划分问题以增强算法对数据全局结构的适应性;然后,利用CFSFDP算法对处理后的数据集进行聚类。结合这两种聚类算法各自的优势,能进一步提升聚类算法的性能。在5个人工合成数据集(2个线性数据集和3个非线性数据集)与4个UCI数据库中真实数据集上的聚类结果显示,相比CFSFDP算法,CFSFDP-SA算法的聚类精度有一定提升,在高维数据集的聚类精度上最多提高了14%,对原始数据集的适应性更强。 展开更多
关键词 数据 适应性 降维 密度峰值快速 谱分析
下载PDF
基于快速密度聚类的电力通信网节点重要性评估 被引量:14
12
作者 狄立 郑征 +1 位作者 夏旻 胡凯 《电力系统保护与控制》 EI CSCD 北大核心 2016年第13期90-95,共6页
电力通信网的节点重要性评估是电力通信研究的一个重要议题。针对目前电力通信网节点重要性评估存在的连接权值单一以及评价指标单一等问题,利用电力通信网的带宽和距离作为权值,计算电力通信网节点的多种评价指标:节点强度、节点紧密... 电力通信网的节点重要性评估是电力通信研究的一个重要议题。针对目前电力通信网节点重要性评估存在的连接权值单一以及评价指标单一等问题,利用电力通信网的带宽和距离作为权值,计算电力通信网节点的多种评价指标:节点强度、节点紧密度以及节点的介数。基于电力通信网节点的多种评价指标,利用快速密度聚类方法建立电力通信网的节点重要性评估模型,为电网通信的规划做支撑。通过快速密度聚类方法进行无监督的分类,将节点分为若干个重要性等级。该方法可以有效地改善基于距离的无监督分类方法的不足。利用某省的实际电网通信数据进行检验,验证了该方法在电力通信网中的实用性。 展开更多
关键词 电力通信网 节点重要性 快速密度 无监督分 节点特性
下载PDF
改进的结合密度聚类的SVM快速分类方法 被引量:5
13
作者 张珍珍 董才林 +1 位作者 陈增照 何秀玲 《计算机工程与应用》 CSCD 北大核心 2011年第2期136-138,共3页
针对SVM在对大规模数据分类时求解规模过大的问题,提出了一种缩减数据集以提高训练速度的方法。该算法的第一步利用基于密度的方法大致定位能代表某个局域的质点,然后用SVM训练缩减后的数据得到一组支持向量,第二步的训练数据由支持向... 针对SVM在对大规模数据分类时求解规模过大的问题,提出了一种缩减数据集以提高训练速度的方法。该算法的第一步利用基于密度的方法大致定位能代表某个局域的质点,然后用SVM训练缩减后的数据得到一组支持向量,第二步的训练数据由支持向量以及其所代表的样本点构成。仿真实验证明该算法在保证分类准确率的情况下能有效地提高分类速度。 展开更多
关键词 密度 SVM算法 快速 大数据集
下载PDF
VANET随机部署环境下基于改进型共享最近邻密度峰聚类的快速分簇算法
14
作者 陈靖宇 徐志林 《计算机测量与控制》 2023年第9期174-182,共9页
针对车辆高速移动场景下,网络拓扑变化过大导致网络分簇结果不稳定的问题,提出一种基于改进型共享最近邻密度峰聚类的快速成簇算法SNNCA(shared nearest neighbor clustering algorithm);通过综合考虑节点的链路生存周期和移动相似性,... 针对车辆高速移动场景下,网络拓扑变化过大导致网络分簇结果不稳定的问题,提出一种基于改进型共享最近邻密度峰聚类的快速成簇算法SNNCA(shared nearest neighbor clustering algorithm);通过综合考虑节点的链路生存周期和移动相似性,提出一种全新的节点连接稳定程度评估指标,并将该评估指标应用于节点共享最近邻的计算过程,以组织网络节点为划分合理的多跳簇结构;为适应网络环境的动态变化,提出一种簇维护策略,其中每个层级的簇成员承担着维护下一层级簇成员的任务,该策略能够对簇成员进行批量分离或合并,从而实现了算法的分布式快速收敛;根据随机部署场景中进行的仿真实验结果显示,相比其他较新算法,SNNCA算法降低了74%的簇数量,并且簇成员的平均存活时间增加了近1倍,表现出更好的网络稳定性和健壮性。 展开更多
关键词 车载自组织网络 快速分簇算法 共享最近邻 密度 随机部署场景 多跳簇结构
下载PDF
半监督约束集成的快速密度峰值聚类算法 被引量:23
15
作者 刘如辉 黄炜平 +2 位作者 王凯 刘创 梁军 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2018年第11期2191-2200,2242,共11页
为了解决2014年在Science上提出的快速密度峰值聚类(CFDP)算法存在的自动选择时误选和漏选中心点、簇的数量需要主观先验判断、算法使用受场景局限的缺陷,从半监督角度出发,结合集成学习思想提出半监督约束集成的快速密度峰值聚类(SiCE-... 为了解决2014年在Science上提出的快速密度峰值聚类(CFDP)算法存在的自动选择时误选和漏选中心点、簇的数量需要主观先验判断、算法使用受场景局限的缺陷,从半监督角度出发,结合集成学习思想提出半监督约束集成的快速密度峰值聚类(SiCE-CFDP)算法. SiCE-CFDP算法使用相对密度方式度量节点密度,从多角度分析决策图,自动选择候选中心点,并最终自动确定簇的数量.在只标注有限约束关系的前提下,算法能以集成学习指导约束信息的扩充,提升聚类性能.在方法验证中,通过3个人工数据集、4个公开数据集以及1个空调系统数据集进行仿真研究.结果表明,在相同的约束量前提下,针对大样本数据,SiCE-CFDP算法相比其他半监督聚类算法具有更高的聚类精度. 展开更多
关键词 半监督约束 集成学习 快速密度峰值 决策图
下载PDF
基于快速密度聚类的RBF神经网络设计 被引量:9
16
作者 蒙西 乔俊飞 李文静 《智能系统学报》 CSCD 北大核心 2018年第3期331-338,共8页
针对径向基函数(radial basis function,RBF)神经网络隐含层结构难以确定的问题,提出一种基于快速密度聚类的网络结构设计算法。该算法将快速密度聚类算法良好的聚类特性用于RBF神经网络结构设计中,通过寻找密度最大的点并将其作为隐含... 针对径向基函数(radial basis function,RBF)神经网络隐含层结构难以确定的问题,提出一种基于快速密度聚类的网络结构设计算法。该算法将快速密度聚类算法良好的聚类特性用于RBF神经网络结构设计中,通过寻找密度最大的点并将其作为隐含层神经元,进而确定隐含层神经元个数和初始参数;同时,引入高斯函数的特性,保证了每个隐含层神经元的活性;最后,用一种改进的二阶算法对神经网络进行训练,提高了神经网络的收敛速度和泛化能力。利用典型非线性函数逼近和非线性动态系统辨识实验进行仿真验证,结果表明,基于快速密度聚类设计的RBF神经网络具有紧凑的网络结构、快速的学习能力和良好的泛化能力。 展开更多
关键词 RBF神经网络 快速密度 结构设计 神经元活性 二阶算法 泛化能力 函数逼近 系统辨识
下载PDF
一种基于共享近邻的密度聚类算法
17
作者 郑喜臣 杨易扬 《计算机应用与软件》 北大核心 2024年第2期264-270,共7页
针对经典的快速漂移(Quick Shift)算法在偏移过程中需要人为地指定领域值,导致在复杂数据集上表现不佳等问题,提出一种改进的共享近邻密度聚类算法(QS-SNN)。该聚类算法基于共享近邻(SNN),计算出样本点之间的相似度;通过相似度衡量得到... 针对经典的快速漂移(Quick Shift)算法在偏移过程中需要人为地指定领域值,导致在复杂数据集上表现不佳等问题,提出一种改进的共享近邻密度聚类算法(QS-SNN)。该聚类算法基于共享近邻(SNN),计算出样本点之间的相似度;通过相似度衡量得到样本点的局部密度矩阵;通过在SNN领域中对样本点进行快速偏移,得到最终的聚类结果。在多个数据集上进行实验,结果分析表明,该算法比传统的Quick shift算法以及其他的聚类算法在准确度上有了较大的提升。 展开更多
关键词 密度 共享近邻 快速漂移
下载PDF
基于自动快速密度峰值聚类的粒子群动态优化算法 被引量:1
18
作者 李飞 乐强 +2 位作者 潘紫微 孙怡宁 余晓流 《计算机应用》 CSCD 北大核心 2023年第S01期154-162,共9页
针对常规多种群方法在求解动态优化问题时往往存在多样性缺失现象,提出一种基于自动快速密度峰值聚类的粒子群动态优化算法(DPCPSO)。首先,利用自动快速密度峰值聚类通过粒子的自身密度和相对距离创建无敏感参数子种群;然后,使用粒子群... 针对常规多种群方法在求解动态优化问题时往往存在多样性缺失现象,提出一种基于自动快速密度峰值聚类的粒子群动态优化算法(DPCPSO)。首先,利用自动快速密度峰值聚类通过粒子的自身密度和相对距离创建无敏感参数子种群;然后,使用粒子群优化(PSO)来寻找最优解,在搜索过程中采用停滞计数器来判断粒子是否停滞,防止种群过早收敛;最后,采用最优粒子重定位策略响应环境变化。为了验证所提出算法的性能,在移动峰值基准(MPB)和广义动态基准生成器(GDBG)测试问题上进行了仿真实验。仿真实验中,所提算法性能与基于亲和传播聚类的动态优化算法(APCPSO)、基于聚类的动态优化(CPSO)算法等其他先进算法相比较,在峰值数大于20以及变化频率为2000和3000时均取得良好的结果。实验结果表明,所提算法更适合求解多模态和快变特性的动态优化问题。 展开更多
关键词 动态优化问题 多种群方法 快速密度峰值 停滞检测 最优粒子重定位策略
下载PDF
可撤销属性加密结合快速密度聚类算法的非结构化大数据安全存储方法 被引量:17
19
作者 谷保平 马建红 《计算机应用与软件》 北大核心 2021年第5期337-343,共7页
针对非结构化大数据难以实现安全存储和易遭受安全攻击的问题,提出可撤销属性加密结合快速密度聚类算法的非结构化大数据安全存储方法。利用可撤销属性方法为非结构化大数据提供安全的存储结构,通过区分安全攻击和传输错误来防止大数据... 针对非结构化大数据难以实现安全存储和易遭受安全攻击的问题,提出可撤销属性加密结合快速密度聚类算法的非结构化大数据安全存储方法。利用可撤销属性方法为非结构化大数据提供安全的存储结构,通过区分安全攻击和传输错误来防止大数据的误传和避免安全攻击;利用霍夫曼压缩技术对数据进行快速压缩,节省非结构化大数据处理过程中的时间开销;利用错误控制技术为潜在丢失的数据提供备份系统,并利用快速密度聚类算法有效处理多维大数据文件。实验证明,相比于其他现有非结构化大数据安全存储方法,该方法的执行速度更快,时间开销更小,信息损失百分比更低,信噪比(SNR)和压缩比更高。 展开更多
关键词 可撤销属性加密 快速密度算法 非结构化 大数据 安全存储 安全攻击 霍夫曼压缩
下载PDF
Hadoop平台下基于快速搜索与密度峰值查找的聚类算法 被引量:2
20
作者 郭友雄 黄添强 +1 位作者 林玲鹏 黄维 《福建师大福清分校学报》 2018年第2期37-44,109,共9页
针对K-means并行化算法中需要人为初始化起始中心点以及每次迭代都要重复计算所有点与中心点距离的低效率问题提出了一种基于快速搜索与密度峰值查找的并行化算法.采用了"化整为一"原则对算法进行并行化处理,即将每个节点的Ma... 针对K-means并行化算法中需要人为初始化起始中心点以及每次迭代都要重复计算所有点与中心点距离的低效率问题提出了一种基于快速搜索与密度峰值查找的并行化算法.采用了"化整为一"原则对算法进行并行化处理,即将每个节点的Map阶段得到的局部CFSFDP聚类结果集中的每个簇视为一个待聚类样本点,在Reduce阶段将这些样本点再进行一次CFSFDP聚类,从而能够快速的将相似的簇聚集在一起归并为同类别.采用Hadoop平台下的并行编程方法,以海量的新闻信息聚类进行实验.实验结果显示,嵌入了基于快速搜索与密度峰值查找的聚类算法后,相对于传统的K-means并行化算法在效率与聚类的结果准确度上都有着明显的提升. 展开更多
关键词 HADOOP 快速搜索与密度峰值查找 MAPREDUCE
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部