Aiming at the faults of some weak nodes in the concentrated solar power-photovoltaic(CSP-PV)hybrid power generation system,it is impossible to restore the transient voltage only relying on the reactive power regulatio...Aiming at the faults of some weak nodes in the concentrated solar power-photovoltaic(CSP-PV)hybrid power generation system,it is impossible to restore the transient voltage only relying on the reactive power regulation capability of the system itself.We propose a dynamic reactive power planning method suitable for CSP-PV hybrid power generation system.The method determines the installation node of the dynamic reactive power compensation device and its compensation capacity based on the reactive power adjustment capability of the system itself.The critical fault node is determined by the transient voltage stability recovery index,and the weak node of the system is initially determined.Based on this,the sensitivity index is used to determine the installation node of the dynamic reactive power compensation device.Dynamic reactive power planning optimization model is established with the lowest investment cost of dynamic reactive power compensation device and the improvement of system transient voltage stability.Furthermore,the component of the reactive power compensation node is optimized by particle swarm optimization based on differential evolution(DE-PSO).The simulation results of the example system show that compared with the dynamic position compensation device installation location optimization method,the proposed method can improve the transient voltage stability of the system under the same reactive power compensation cost.展开更多
针对现有基于划分的聚类算法无法有效聚类簇大小和簇密度有较大差异的非均匀数据的问题,提出一种基于变异系数聚类算法。从聚类优化目标的角度出发,分析了以K-means为代表的划分聚类算法引发"均匀效应"的成因;提出以变异系数...针对现有基于划分的聚类算法无法有效聚类簇大小和簇密度有较大差异的非均匀数据的问题,提出一种基于变异系数聚类算法。从聚类优化目标的角度出发,分析了以K-means为代表的划分聚类算法引发"均匀效应"的成因;提出以变异系数度量非均匀数据的分布散度,并基于变异系数定义一种非均匀数据的相异度公式;基于相异度公式定义了聚类目标优化函数,并根据局部优化方法给出聚类算法过程。在合成和真实数据集上的试验结果表明,与K-means、Verify2、ESSC聚类算法相比,本研究提出的非均匀数据的变异系数聚类算法(coefficient of variation clustering for non-uniform data,CVCN)聚类精度提升5%~40%。展开更多
DNA-based approaches to systematics have changed dramatically during the last two decades with the rise of DNA barcoding methods and newer multi-locus methods for species delimitation. During the last half-decade, par...DNA-based approaches to systematics have changed dramatically during the last two decades with the rise of DNA barcoding methods and newer multi-locus methods for species delimitation. During the last half-decade, partly driven by the new sequencing technologies, the focus has shifted to multi-locus sequence data and the identification of species within the frame-work of the multi-species coalescent (MSC). In this paper, I discuss model-based Bayesian methods for species delimitation that have been developed in recent years using the MSC. Several approximate methods for species delimitation (and their limitations) are also discussed. Explicit species delimitation models have the advantage of clarifying more precisely what is being delimited and what assumptions we are making in doing so. Moreover, the methods can be very powerful when applied to large multi-locus datasets and thus take full advantage of data generated using today's technologies [Current Zoology 61 (5): 846-853,2015].展开更多
基金Science and Technology Projects of State Grid Corporation of China(No.SGGSKY00FJJS1800140)。
文摘Aiming at the faults of some weak nodes in the concentrated solar power-photovoltaic(CSP-PV)hybrid power generation system,it is impossible to restore the transient voltage only relying on the reactive power regulation capability of the system itself.We propose a dynamic reactive power planning method suitable for CSP-PV hybrid power generation system.The method determines the installation node of the dynamic reactive power compensation device and its compensation capacity based on the reactive power adjustment capability of the system itself.The critical fault node is determined by the transient voltage stability recovery index,and the weak node of the system is initially determined.Based on this,the sensitivity index is used to determine the installation node of the dynamic reactive power compensation device.Dynamic reactive power planning optimization model is established with the lowest investment cost of dynamic reactive power compensation device and the improvement of system transient voltage stability.Furthermore,the component of the reactive power compensation node is optimized by particle swarm optimization based on differential evolution(DE-PSO).The simulation results of the example system show that compared with the dynamic position compensation device installation location optimization method,the proposed method can improve the transient voltage stability of the system under the same reactive power compensation cost.
文摘针对现有基于划分的聚类算法无法有效聚类簇大小和簇密度有较大差异的非均匀数据的问题,提出一种基于变异系数聚类算法。从聚类优化目标的角度出发,分析了以K-means为代表的划分聚类算法引发"均匀效应"的成因;提出以变异系数度量非均匀数据的分布散度,并基于变异系数定义一种非均匀数据的相异度公式;基于相异度公式定义了聚类目标优化函数,并根据局部优化方法给出聚类算法过程。在合成和真实数据集上的试验结果表明,与K-means、Verify2、ESSC聚类算法相比,本研究提出的非均匀数据的变异系数聚类算法(coefficient of variation clustering for non-uniform data,CVCN)聚类精度提升5%~40%。
文摘DNA-based approaches to systematics have changed dramatically during the last two decades with the rise of DNA barcoding methods and newer multi-locus methods for species delimitation. During the last half-decade, partly driven by the new sequencing technologies, the focus has shifted to multi-locus sequence data and the identification of species within the frame-work of the multi-species coalescent (MSC). In this paper, I discuss model-based Bayesian methods for species delimitation that have been developed in recent years using the MSC. Several approximate methods for species delimitation (and their limitations) are also discussed. Explicit species delimitation models have the advantage of clarifying more precisely what is being delimited and what assumptions we are making in doing so. Moreover, the methods can be very powerful when applied to large multi-locus datasets and thus take full advantage of data generated using today's technologies [Current Zoology 61 (5): 846-853,2015].