期刊文献+
共找到37篇文章
< 1 2 >
每页显示 20 50 100
基于双向编码表示转换的双模态软件分类模型
1
作者 付晓峰 陈威岐 +1 位作者 孙曜 潘宇泽 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第11期2239-2246,共8页
针对已有方法在软件分类方面只考虑单一分类因素和精确率较低的不足,提出基于双向编码表示转换(BERT)的双模态软件分类方法.该方法遵循最新的国家标准对软件进行分类,通过集成基于代码的BERT(CodeBERT)和基于掩码语言模型的纠错BERT(Mac... 针对已有方法在软件分类方面只考虑单一分类因素和精确率较低的不足,提出基于双向编码表示转换(BERT)的双模态软件分类方法.该方法遵循最新的国家标准对软件进行分类,通过集成基于代码的BERT(CodeBERT)和基于掩码语言模型的纠错BERT(MacBERT)双向编码的优势,其中CodeBERT用于深入分析源码内容,MacBERT处理文本描述信息如注释和文档,利用这2种双模态信息联合生成词嵌入.结合卷积神经网络(CNN)提取局部特征,通过提出的交叉自注意力机制(CSAM)融合模型结果,实现对复杂软件系统的准确分类.实验结果表明,本文方法在同时考虑文本和源码数据的情况下精确率高达93.3%,与从奥集能和gitee平台收集并处理的数据集上训练的BERT模型和CodeBERT模型相比,平均精确率提高了5.4%.这表明了双向编码和双模态分类方法在软件分类中的高效性和准确性,证明了提出方法的实用性. 展开更多
关键词 软件分类 双向编码表示转换(bert) 卷积神经网络 双模态 交叉自注意力机制
下载PDF
BTM-BERT模型在民航机务维修安全隐患自动分类中的应用
2
作者 陈芳 张亚博 《安全与环境学报》 CAS CSCD 北大核心 2024年第11期4366-4373,共8页
为界定民航机务维修安全隐患类别,实现安全隐患数据的自动分类,首先,利用构建的机务维修停用词库对安全隐患记录语料进行预处理。其次,运用词对主题模型(Biterm Topic Model,BTM)提取主题和关键词,确定了“员工未按规定对工作现场进行... 为界定民航机务维修安全隐患类别,实现安全隐患数据的自动分类,首先,利用构建的机务维修停用词库对安全隐患记录语料进行预处理。其次,运用词对主题模型(Biterm Topic Model,BTM)提取主题和关键词,确定了“员工未按规定对工作现场进行监管”等12类安全隐患。最后,根据BTM主题模型标注的数据集对算法进行微调,构建了基于变换器的双向编码(Bidirectional Encoder Representations from Transformers,BERT)算法的机务维修安全隐患记录自动分类模型,并与传统的分类算法进行对比。结果表明:所构建的模型可以实现民航机务维修安全隐患自动分类,其效果远高于传统机器学习支持向量机算法的效果,构建的分类模型的精确率、召回率和F 1较文本卷积神经网络算法分别提升了0.12、0.14和0.14,总体准确率达到了93%。 展开更多
关键词 安全工程 机务维修 词对主题模型(BTM) 基于变换器的双向编码(bert) 安全隐患 文本分类
下载PDF
基于BERT+CNN_BiLSTM的列控车载设备故障诊断
3
作者 陈永刚 贾水兰 +2 位作者 朱键 韩思成 熊文祥 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第1期120-127,共8页
列控车载设备作为列车运行控制系统核心设备,在高速列车运行过程中发挥着重要作用。目前,其故障诊断仅依赖于现场作业人员经验,诊断效率相对较低。为了实现列控车载设备故障自动诊断并提高诊断效率,提出了BERT+CNN_BiLSTM故障诊断模型... 列控车载设备作为列车运行控制系统核心设备,在高速列车运行过程中发挥着重要作用。目前,其故障诊断仅依赖于现场作业人员经验,诊断效率相对较低。为了实现列控车载设备故障自动诊断并提高诊断效率,提出了BERT+CNN_BiLSTM故障诊断模型。首先,使用来自变换器的双向编码器表征量(Bidirectional encoder representations from transformers,BERT)模型将应用事件日志(Application event log,AElog)转换为计算机能够识别的可以挖掘语义信息的文本向量表示。其次,分别利用卷积神经网络(Convolutional neural network,CNN)和双向长短时记忆网络(Bidirectional long short-term memory,BiLSTM)提取故障特征并进行组合,从而增强空间和时序能力。最后,利用Softmax实现列控车载设备的故障分类与诊断。实验中,选取一列实际运行的列车为研究对象,以运行过程中产生的AElog日志作为实验数据来验证BERT+CNN_BiLSTM模型的性能。与传统机器学习算法、BERT+BiLSTM模型和BERT+CNN模型相比,BERT+CNN_BiLSTM模型的准确率、召回率和F1分别为92.27%、91.03%和91.64%,表明该模型在高速列车控制系统故障诊断中性能优良。 展开更多
关键词 车载设备 故障诊断 来自变换器的双向编码器表征量 应用事件日志 双向长短时记忆网络 卷积神经网络
下载PDF
利用BERT和覆盖率机制改进的HiNT文本检索模型
4
作者 邸剑 刘骏华 曹锦纲 《智能系统学报》 CSCD 北大核心 2024年第3期719-727,共9页
为有效提升文本语义检索的准确度,本文针对当前文本检索模型衡量查询和文档的相关性时不能很好地解决文本歧义和一词多义等问题,提出一种基于改进的分层神经匹配模型(hierarchical neural matching model,HiNT)。该模型先对文档的各个... 为有效提升文本语义检索的准确度,本文针对当前文本检索模型衡量查询和文档的相关性时不能很好地解决文本歧义和一词多义等问题,提出一种基于改进的分层神经匹配模型(hierarchical neural matching model,HiNT)。该模型先对文档的各个段提取关键主题词,然后用基于变换器的双向编码器(bidirectional encoder representations from transformers,BERT)模型将其编码为多个稠密的语义向量,再利用引入覆盖率机制的局部匹配层进行处理,使模型可以根据文档的局部段级别粒度和全局文档级别粒度进行相关性计算,提高检索的准确率。本文提出的模型在MS MARCO和webtext2019zh数据集上与多个检索模型进行对比,取得了最优结果,验证了本文提出模型的有效性。 展开更多
关键词 基于变换器的双向编码 分层神经匹配模型 覆盖率机制 文本检索 语义表示 特征提取 自然语言处理 相似度 多粒度
下载PDF
基于BERT的多模型融合的Web攻击检测方法
5
作者 袁平宇 邱林 《计算机工程》 CAS CSCD 北大核心 2024年第11期197-206,共10页
传统Web攻击检测方法准确率不高,不能有效防范Web攻击。针对该问题,提出一种基于变换器的双向编码器表示(BERT)的预训练模型、文本卷积神经网络(TextCNN)和双向长短期记忆网络(BiLSTM)多模型融合的Web攻击检测方法。先将HTTP请求进行预... 传统Web攻击检测方法准确率不高,不能有效防范Web攻击。针对该问题,提出一种基于变换器的双向编码器表示(BERT)的预训练模型、文本卷积神经网络(TextCNN)和双向长短期记忆网络(BiLSTM)多模型融合的Web攻击检测方法。先将HTTP请求进行预处理,再通过BERT进行训练得到具备上下文依赖的特征向量,并用TextCNN模型进一步提取其中的高阶语义特征,作为BiLSTM的输入,最后利用Softmax函数进行分类检测。在HTTP CSIC 2010和恶意URL检测两个数据集上对所提方法进行验证,结果表明,与支持向量机(SVM)、逻辑回归(LR)等传统的机器学习方法和现有较新的方法相比,基于BERT的多模型融合的Web攻击检测方法在准确率、精确率、召回率和F1值指标上均表现更优(准确率和F1值的最优值都在99%以上),能准确检测Web攻击。 展开更多
关键词 Web攻击检测 基于变换器的双向编码器表示 多模型融合 HTTP请求 文本卷积神经网络 双向长短期记忆网络
下载PDF
基于BERT-CNN的中文评论文本情感分析
6
作者 邵辉 《科技创新导报》 2021年第31期179-183,共5页
对中文酒店评论文本,CNN、BIGRU等模型无法充分获得文本上下文之间的关系,因此在情感分析上没有很好的效果。BERT模型提出后,它在文本上下文之间的关系的提取上有着很大的优势。以此为基础,本文提出一种基于预训练的(BERT)网络与卷积神... 对中文酒店评论文本,CNN、BIGRU等模型无法充分获得文本上下文之间的关系,因此在情感分析上没有很好的效果。BERT模型提出后,它在文本上下文之间的关系的提取上有着很大的优势。以此为基础,本文提出一种基于预训练的(BERT)网络与卷积神经网络(CNN)相结合的BERT-CNN模型得到酒店评论中更多的情感信息。首先利用BERT模型对评论文本信息编码,再通过CNN模型提取局部特征,最终提取语义。最后通过实验来将该模型与现有模型进行比较,在酒店评论数据集上所做的实验充分表明该方法能更准确地进行中文文本情感分析。 展开更多
关键词 bert 卷积神经网络 情感分析 自注意力机制 双向编码转换器
下载PDF
基于BERT和双通道注意力的文本情感分类模型 被引量:27
7
作者 谢润忠 李烨 《数据采集与处理》 CSCD 北大核心 2020年第4期642-652,共11页
对于句子级文本情感分析问题,目前的深度学习方法未能充分运用情感词、否定词、程度副词等情感语言资源。提出一种基于变换器的双向编码器表征技术(Bidirectional encoder representations from transformers,BERT)和双通道注意力的新... 对于句子级文本情感分析问题,目前的深度学习方法未能充分运用情感词、否定词、程度副词等情感语言资源。提出一种基于变换器的双向编码器表征技术(Bidirectional encoder representations from transformers,BERT)和双通道注意力的新模型。基于双向门控循环单元(BiGRU)神经网络的通道负责提取语义特征,而基于全连接神经网络的通道负责提取情感特征;同时,在两个通道中均引入注意力机制以更好地提取关键信息,并且均采用预训练模型BERT提供词向量,通过BERT依据上下文语境对词向量的动态调整,将真实情感语义嵌入到模型;最后,通过对双通道的语义特征与情感特征进行融合,获取最终语义表达。实验结果表明,相比其他词向量工具,BERT的特征提取能力更强,而情感信息通道和注意力机制增强了模型捕捉情感语义的能力,明显提升了情感分类性能,且在收敛速度和稳定性上更优。 展开更多
关键词 文本情感分析 深度学习 基于变换器的双向编码器表征技术 双通道 注意力 双向门控循环单元
下载PDF
融合BERT的多层次语义协同模型情感分析研究 被引量:16
8
作者 胡任远 刘建华 +2 位作者 卜冠南 张冬阳 罗逸轩 《计算机工程与应用》 CSCD 北大核心 2021年第13期176-184,共9页
由于基于变换器的双向编码器表征技术(Bidirectional Encoder Representations from Transformers,BERT)的提出,改变了传统神经网络解决句子级文本情感分析问题的方法。目前的深度学习模型BERT本身学习模式为无监督学习,其需要依赖后续... 由于基于变换器的双向编码器表征技术(Bidirectional Encoder Representations from Transformers,BERT)的提出,改变了传统神经网络解决句子级文本情感分析问题的方法。目前的深度学习模型BERT本身学习模式为无监督学习,其需要依赖后续任务补全推理和决策环节,故存在缺乏目标领域知识的问题。提出一种多层协同卷积神经网络模型(Multi-level Convolutional Neural Network,MCNN),该模型能学习到不同层次的情感特征来补充领域知识,并且使用BERT预训练模型提供词向量,通过BERT学习能力的动态调整将句子真实的情感倾向嵌入模型,最后将不同层次模型输出的特征信息同双向长短期记忆网络输出信息进行特征融合后计算出最终的文本情感性向。实验结果表明即使在不同语种的语料中,该模型对比传统神经网络和近期提出的基于BERT深度学习的模型,情感极性分类的能力有明显提升。 展开更多
关键词 深度学习 文本情感分析 基于变换器的双向编码器表征技术(bert) 卷积神经网络(CNN) 协同结构
下载PDF
基于BERT-BiGRU模型的文本分类研究 被引量:10
9
作者 王紫音 于青 《天津理工大学学报》 2021年第4期40-46,共7页
文本分类是自然语言处理的典型应用,目前文本分类最常用的是深度学习的分类方法。针对中文文本数据具有多种特性,例如隐喻表达、语义多义性、语法特异性等,在文本分类中进行研究。提出基于编码器-解码器的双向编码表示法-双向门控制循... 文本分类是自然语言处理的典型应用,目前文本分类最常用的是深度学习的分类方法。针对中文文本数据具有多种特性,例如隐喻表达、语义多义性、语法特异性等,在文本分类中进行研究。提出基于编码器-解码器的双向编码表示法-双向门控制循环单元(bidirectional encoder representations from transformers-bidirectional gate recurrent unit,BERT-BiGRU)模型结构,使用BERT模型代替传统的Word2vec模型表示词向量,根据上下文信息计算字的表示,在融合上下文信息的同时还能根据字的多义性进行调整,增强了字的语义表示。在BERT模型后面增加了BiGRU,将训练后的词向量作为Bi GRU的输入进行训练,该模型可以同时从两个方向对文本信息进行特征提取,使模型具有更好的文本表示信息能力,达到更精确的文本分类效果。使用提出的BERT-BiGRU模型进行文本分类,最终准确率达到0.93,召回率达到0.94,综合评价数值F1达到0.93。通过与其他模型的试验结果对比,发现BERT-BiGRU模型在中文文本分类任务中有良好的性能。 展开更多
关键词 文本分类 深度学习 基于编码器-解码器的双向编码表示法(bidirectional encoder representations from transformers bert)模型 双向门控制循环单元(bidirectional gate recurrent unit BiGRU)
下载PDF
基于BERT的施工安全事故文本命名实体识别方法 被引量:1
10
作者 孙文涵 王俊杰 《电视技术》 2023年第1期20-26,共7页
为解决传统施工安全管理中对事故报告信息分析效率低的问题,利用自然语言处理(Natural Language Processing,NLP)技术,提出基于双向编码器表示(Bidirectional Encoder Representations from Transformers,BERT)的施工安全事故文本命名... 为解决传统施工安全管理中对事故报告信息分析效率低的问题,利用自然语言处理(Natural Language Processing,NLP)技术,提出基于双向编码器表示(Bidirectional Encoder Representations from Transformers,BERT)的施工安全事故文本命名实体识别方法。以自建的施工安全事故领域实体标注语料数据集为研究对象,首先利用BERT预训练模型获取动态字向量,然后采用双向长短时记忆网络-注意力机制-条件随机场(BiLSTM-Attention-CRF)对前一层输出的语义编码进行序列标注和解码以获取最优文本标签序列。实验结果表明,该模型在自建数据集上的F1值分数为92.58%,较基准模型BiLSTM-CRF提升了4.19%;该方法对事故时间等5类实体识别F1值均可达到91%以上,验证了该方法对施工安全事故实体识别的有效性,说明模型可用于实际施工知识管理中并指导建筑安全管理的安全培训。 展开更多
关键词 双向编码器表示(bert) 施工安全管理 命名实体识别 知识图谱 知识管理
下载PDF
基于BERT的灾害三元组信息抽取优化研究 被引量:6
11
作者 宋敦江 杨霖 钟少波 《中国安全科学学报》 CAS CSCD 北大核心 2022年第2期115-120,共6页
为从网络媒体文本中快速、准确提取灾害三元组信息,利用自然语言处理(NLP)技术,研究灾害三元组信息抽取应用及其算法优化。通过双向编码器表示(BERT)预训练语言模型,应用于地质灾害三元组信息提取的实例中,针对模型由于底层多头注意力(M... 为从网络媒体文本中快速、准确提取灾害三元组信息,利用自然语言处理(NLP)技术,研究灾害三元组信息抽取应用及其算法优化。通过双向编码器表示(BERT)预训练语言模型,应用于地质灾害三元组信息提取的实例中,针对模型由于底层多头注意力(MHA)机制会导致“低秩瓶颈”问题,对此,通过增大模型key-size对其进行优化。结果表明:所提方法能够显著提升从新闻报道等文本中提取地质灾害种类、发生地点、发生时间等关键信息的容错率及精准率;可得到对地质等灾害空间分布情况和趋势的分析,进而为预案编制、应急资源优化配置、区域监测预警等灾害应急管理工作提供科学分析和决策信息支持。 展开更多
关键词 然语言处理(NLP) 双向编码器表示(bert) 低秩瓶颈 多头注意力(MHA) 灾害信息
下载PDF
基于BERT-CNN的Webshell流量检测系统设计与实现 被引量:6
12
作者 江魁 余志航 +1 位作者 陈小雷 李宇豪 《计算机应用》 CSCD 北大核心 2023年第S01期126-132,共7页
Webshell是一种网站后门程序,常被黑客用于入侵服务器后对服务器进行控制,给网站带来严重的安全隐患。针对以往基于流量的机器学习检测Webshell方法存在特征选择不全、向量化不准确、模型设计不合理导致的检测效果不佳问题,设计并实现... Webshell是一种网站后门程序,常被黑客用于入侵服务器后对服务器进行控制,给网站带来严重的安全隐患。针对以往基于流量的机器学习检测Webshell方法存在特征选择不全、向量化不准确、模型设计不合理导致的检测效果不佳问题,设计并实现了一种将基于变换器的双向编码器表示技术(BERT)与卷积神经网络(CNN)相结合的Webshell流量检测系统,通过分析超文本传输协议(HTTP)报文中各个字段信息,提取其中具有Webshell信息的特征字段,使用BERT模型对特征进行向量化编码,并结合一维CNN模型从不同空间维度检测特征建立分类模型,最后使用模型对流量数据进行检测调优。实验结果表明,与以往基于流量检测方法相比,该检测系统在准确率、召回率和F1值等性能指标上表现更好,分别达到99.84%、99.83%、99.84%。 展开更多
关键词 Webshell检测 深度学习 流量检测 基于变换器的双向编码器表示 卷积神经网络
下载PDF
基于BERT模型的检验检测领域命名实体识别
13
作者 苏展鹏 李洋 +4 位作者 张婷婷 让冉 张龙波 蔡红珍 邢林林 《高技术通讯》 CAS 2022年第7期749-755,共7页
针对检验检测领域存在的实体语料匮乏、实体嵌套严重、实体类型冗杂繁多等问题,提出了一种结合双向编码器表示法(BERT)预处理语言模型、双向门控循环单元(BIGRU)双向轻编码模型和随机条件场(CRF)的命名实体识别方法。BERT-BIGRU-CRF(BGC... 针对检验检测领域存在的实体语料匮乏、实体嵌套严重、实体类型冗杂繁多等问题,提出了一种结合双向编码器表示法(BERT)预处理语言模型、双向门控循环单元(BIGRU)双向轻编码模型和随机条件场(CRF)的命名实体识别方法。BERT-BIGRU-CRF(BGC)模型首先利用BERT预处理模型结合上下文语义训练词向量;然后经过BIGRU层双向编码;最后在CRF层计算后输出最优结果。利用含有检测组织、检测项目、检测标准和检测仪器4种命名实体的检验检测领域数据集来训练模型,结果表明BGC模型的准确率、召回率和F1值都优于不加入BERT的对比模型。同时对比BERT-BILSTM-CRF模型,BGC模型在训练时间上缩短了6%。 展开更多
关键词 命名实体识别 双向编码器表示法(bert) 检验检测领域 深度学习 双向门控循环单元(BIGRU)
下载PDF
基于BERT提示的矿产资源管理规则检测方法研究
14
作者 胡容波 张广发 +1 位作者 王雅雯 方金云 《高技术通讯》 CAS 2023年第11期1136-1145,共10页
政策文本中管理规则检测是一个新兴的自然语言处理任务,在政策冲突检测、政策智能检索、事项合规性检查以及政务系统需求工程等方面具有重要应用价值。本文以矿产资源管理规则检测为研究目标,提出基于转换器的双向编码表征(BERT)提示的... 政策文本中管理规则检测是一个新兴的自然语言处理任务,在政策冲突检测、政策智能检索、事项合规性检查以及政务系统需求工程等方面具有重要应用价值。本文以矿产资源管理规则检测为研究目标,提出基于转换器的双向编码表征(BERT)提示的政策文本管理规则检测方法。该方法通过构建融入管理规则信息、带有[MASK]标记的提示模板,可以充分发挥掩码语言模型的自编码优势,有效激发BERT模型提取与管理规则相关的文本特征,增加模型稳定性;提出基于BERT模型进行管理规则检测的新应用模式,放弃使用[CLS]隐向量而采用[MASK]隐向量进行分类预测;在矿产资源管理规则数据集上的实验结果表明,该方法的准确率、宏平均F_(1)值、加权平均F_(1)值均优于基线方法,在公开数据集上的实验结果也表明了该方法的有效性。 展开更多
关键词 矿产资源 管理规则 文本分类 基于转换器的双向编码表征(bert) 提示学习
下载PDF
基于BERT的中文健康问句分类研究
15
作者 徐星昊 《电视技术》 2022年第3期67-70,共4页
现有的医学健康问句数据大多数都是短文本,但短文本存在特征稀疏的局限性。对此,提出一种融合特征的方法,首先通过基于变换器的双向编码器表征技术(Bidirectional Encoder Representations from Transformers,BERT)字符级特征的输出取... 现有的医学健康问句数据大多数都是短文本,但短文本存在特征稀疏的局限性。对此,提出一种融合特征的方法,首先通过基于变换器的双向编码器表征技术(Bidirectional Encoder Representations from Transformers,BERT)字符级特征的输出取平均并与BERT句子级特征的输出进行拼接,然后使用分类器进行分类。实验结果表明,本模型可以有效地提高模型提取特征的能力,在处理Kesci公众健康问句分类数据集上F1值达到83.92%,在处理中文健康公众问句数据集时F1值达到87%。 展开更多
关键词 基于变换器的双向编码器表征(bert) 健康问句 字符级特征 句子级特征
下载PDF
基于BERT-BiLSTM-CRF的电力集控安全隐患数据处理
16
作者 张滈辰 屈红军 +1 位作者 牛雪莹 耿琴兰 《通信电源技术》 2023年第21期24-27,共4页
为了提高电力集控系统安全隐患数据处理的效果,提出一种基于来自变换器的双向编码器表示-双向长短期记忆网络-条件随机场(Bidirectional Encoder Representations from Transformers-Bidirectional Long Short Term Memory-Conditional ... 为了提高电力集控系统安全隐患数据处理的效果,提出一种基于来自变换器的双向编码器表示-双向长短期记忆网络-条件随机场(Bidirectional Encoder Representations from Transformers-Bidirectional Long Short Term Memory-Conditional Random Fields,BERT-BiLSTM-CRF)的电力集控安全隐患数据处理方法。构建电力集控隐患数据检测模型,应用改进长短时记忆网络(Long Short Term Memory,LSTM)来构建电力集控安全隐患数据修复网络,实现电力集控安全隐患数据处理。实验结果表明,采用所提方法能够更好地完成电力集控安全隐患数据检测与修复,应用效果较好。 展开更多
关键词 来自变换器的双向编码器表示(bert) 双向长短期记忆网络(BiLSTM) 条件随机场(CRF) 电力集控系统 安全隐患数据检测 数据修复
下载PDF
基于BERT模型的智能数据分析技术
17
作者 程钰海 《信息与电脑》 2022年第24期167-170,共4页
面对日趋增长的数据分析需求,以人工编写SQL方式进行数据分析已无法满足要求,而基于自然语言交互界面的数据分析已成为发展趋势。文章提出了一种基于来自变换器的双向编码器表征量(Bidirectional Encoder Representations from Transfor... 面对日趋增长的数据分析需求,以人工编写SQL方式进行数据分析已无法满足要求,而基于自然语言交互界面的数据分析已成为发展趋势。文章提出了一种基于来自变换器的双向编码器表征量(Bidirectional Encoder Representations from Transformers,BERT)模型的智能数据分析技术,相对于Word2Vec/全局唯一标识分区表(Globally Unique Identifier Partition Table,GPT)等模型,大幅提升了自然语言到SQL转换的准确率,使自然语言交互式数据分析准确率超过人工编写SQL的方式。 展开更多
关键词 来自变换器的双向编码器表征量(bert) 自然语言处理(NLP) 智能数据分析
下载PDF
基于命名实体识别的水电工程施工安全规范实体识别模型
18
作者 陈述 张超 +2 位作者 陈云 张光飞 李智 《中国安全科学学报》 CAS CSCD 北大核心 2024年第9期19-26,共8页
为准确识别水电工程施工安全规范实体,通过预训练模型中双向编码器表征法(BERT)挖掘文本中丰富的语义信息,利用双向长短期记忆神经网络(BILSTM)提取规范实体语义特征,依靠条件随机场(CRF)分析实体之间的依赖关系,构建水电工程施工安全... 为准确识别水电工程施工安全规范实体,通过预训练模型中双向编码器表征法(BERT)挖掘文本中丰富的语义信息,利用双向长短期记忆神经网络(BILSTM)提取规范实体语义特征,依靠条件随机场(CRF)分析实体之间的依赖关系,构建水电工程施工安全规范的命名实体识别模型;以《水利水电工程施工安全防护技术规范》(SL714—2015)为例,计算命名实体识别模型精确率。结果表明:BERT-BILSTM-CRF模型准确率为94.35%,相比于3种传统方法,准确率显著提高。研究成果有助于水电工程施工安全规范知识智能管理,为施工安全隐患智能判别提供支撑。 展开更多
关键词 命名实体识别 水电工程施工 安全规范 双向编码器表征法(bert) 双向长短期记忆神经网络(BILSTM) 条件随机场(CRF)
下载PDF
基于情绪分析的生产安全事故政府责任公众感知偏差研究
19
作者 张羽 周旭 梁琦 《中国安全生产科学技术》 CAS CSCD 北大核心 2024年第8期203-209,共7页
为强化政府安全生产监督及行政问责公正机制,提升生产安全事故协同治理能力,利用文本挖掘技术从个体和场域2个层面出发,探索生产安全事故政府责任的公众感知偏差形成机理和影响因素。通过公众责任感知双向编码转换器(BERT-PPR)预测事故... 为强化政府安全生产监督及行政问责公正机制,提升生产安全事故协同治理能力,利用文本挖掘技术从个体和场域2个层面出发,探索生产安全事故政府责任的公众感知偏差形成机理和影响因素。通过公众责任感知双向编码转换器(BERT-PPR)预测事故微博评论的情绪和归责类型,对比事故调查结果得到政府责任的公众感知偏差,并基于二元逻辑回归考察事故信息和微博报道对感知偏差的影响。研究结果表明:采用政府形象框架以及调查结果公布阶段引发政府舆情危机的风险更高;责任人宣判阶段公众更易误判政府有责。行业、阶段、等级、形式、框架因素对生产安全事故政府责任公众感知偏差的影响不同,应采取对应措施,进而纠正相关偏差。研究结果可为安全生产领域内相关政策调整提供参考。 展开更多
关键词 生产安全事故 政府责任 感知偏差 舆情治理 情绪分析 双向编码转换器(bert)
下载PDF
北京市不动产登记运维问题智能分类
20
作者 董承玮 李云汉 +2 位作者 邢晨 肖曼丽 刘世凡 《北京测绘》 2024年第12期1670-1676,共7页
为提高北京市不动产登记的日常运维效率,解决人工处理效率低下、响应时间长的问题,本文提出一种基于变换器的双向编码器表示模型(BERT)的运维问题自动分类方法。首先使用BERT模型提取运维问题文本的上下文语义特征,然后利用全局最大池... 为提高北京市不动产登记的日常运维效率,解决人工处理效率低下、响应时间长的问题,本文提出一种基于变换器的双向编码器表示模型(BERT)的运维问题自动分类方法。首先使用BERT模型提取运维问题文本的上下文语义特征,然后利用全局最大池化技术提取文本的关键类别特征,最后通过Soft Max函数计算各类别的概率,并选择概率最大的类别作为分类结果。实验结果表明,本文方法的宏平均精确率(MP)、宏平均召回率(MR)和宏平均F1值均大于93%,显著优于常用的文本分类技术,充分证明了该方法的有效性,对构建不动产登记智慧运维体系具有一定的参考意义。 展开更多
关键词 不动产 智能分类 预训练语言模型 基于变换器的双向编码器表示模型(bert) 数据集构建
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部