期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
基于BERT+CNN_BiLSTM的列控车载设备故障诊断
1
作者 陈永刚 贾水兰 +2 位作者 朱键 韩思成 熊文祥 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第1期120-127,共8页
列控车载设备作为列车运行控制系统核心设备,在高速列车运行过程中发挥着重要作用。目前,其故障诊断仅依赖于现场作业人员经验,诊断效率相对较低。为了实现列控车载设备故障自动诊断并提高诊断效率,提出了BERT+CNN_BiLSTM故障诊断模型... 列控车载设备作为列车运行控制系统核心设备,在高速列车运行过程中发挥着重要作用。目前,其故障诊断仅依赖于现场作业人员经验,诊断效率相对较低。为了实现列控车载设备故障自动诊断并提高诊断效率,提出了BERT+CNN_BiLSTM故障诊断模型。首先,使用来自变换器的双向编码器表征量(Bidirectional encoder representations from transformers,BERT)模型将应用事件日志(Application event log,AElog)转换为计算机能够识别的可以挖掘语义信息的文本向量表示。其次,分别利用卷积神经网络(Convolutional neural network,CNN)和双向长短时记忆网络(Bidirectional long short-term memory,BiLSTM)提取故障特征并进行组合,从而增强空间和时序能力。最后,利用Softmax实现列控车载设备的故障分类与诊断。实验中,选取一列实际运行的列车为研究对象,以运行过程中产生的AElog日志作为实验数据来验证BERT+CNN_BiLSTM模型的性能。与传统机器学习算法、BERT+BiLSTM模型和BERT+CNN模型相比,BERT+CNN_BiLSTM模型的准确率、召回率和F1分别为92.27%、91.03%和91.64%,表明该模型在高速列车控制系统故障诊断中性能优良。 展开更多
关键词 车载设备 故障诊断 来自变换器的双向编码器表征 应用事件日志 双向长短时记忆网络 卷积神经网络
下载PDF
基于BERT模型的智能数据分析技术
2
作者 程钰海 《信息与电脑》 2022年第24期167-170,共4页
面对日趋增长的数据分析需求,以人工编写SQL方式进行数据分析已无法满足要求,而基于自然语言交互界面的数据分析已成为发展趋势。文章提出了一种基于来自变换器的双向编码器表征量(Bidirectional Encoder Representations from Transfor... 面对日趋增长的数据分析需求,以人工编写SQL方式进行数据分析已无法满足要求,而基于自然语言交互界面的数据分析已成为发展趋势。文章提出了一种基于来自变换器的双向编码器表征量(Bidirectional Encoder Representations from Transformers,BERT)模型的智能数据分析技术,相对于Word2Vec/全局唯一标识分区表(Globally Unique Identifier Partition Table,GPT)等模型,大幅提升了自然语言到SQL转换的准确率,使自然语言交互式数据分析准确率超过人工编写SQL的方式。 展开更多
关键词 来自变换器的双向编码器表征量(bert) 自然语言处理(NLP) 智能数据分析
下载PDF
基于BERT和双通道注意力的文本情感分类模型 被引量:27
3
作者 谢润忠 李烨 《数据采集与处理》 CSCD 北大核心 2020年第4期642-652,共11页
对于句子级文本情感分析问题,目前的深度学习方法未能充分运用情感词、否定词、程度副词等情感语言资源。提出一种基于变换器的双向编码器表征技术(Bidirectional encoder representations from transformers,BERT)和双通道注意力的新... 对于句子级文本情感分析问题,目前的深度学习方法未能充分运用情感词、否定词、程度副词等情感语言资源。提出一种基于变换器的双向编码器表征技术(Bidirectional encoder representations from transformers,BERT)和双通道注意力的新模型。基于双向门控循环单元(BiGRU)神经网络的通道负责提取语义特征,而基于全连接神经网络的通道负责提取情感特征;同时,在两个通道中均引入注意力机制以更好地提取关键信息,并且均采用预训练模型BERT提供词向量,通过BERT依据上下文语境对词向量的动态调整,将真实情感语义嵌入到模型;最后,通过对双通道的语义特征与情感特征进行融合,获取最终语义表达。实验结果表明,相比其他词向量工具,BERT的特征提取能力更强,而情感信息通道和注意力机制增强了模型捕捉情感语义的能力,明显提升了情感分类性能,且在收敛速度和稳定性上更优。 展开更多
关键词 文本情感分析 深度学习 基于变换器的双向编码器表征技术 双通道 注意力 双向门控循环单元
下载PDF
融合BERT的多层次语义协同模型情感分析研究 被引量:15
4
作者 胡任远 刘建华 +2 位作者 卜冠南 张冬阳 罗逸轩 《计算机工程与应用》 CSCD 北大核心 2021年第13期176-184,共9页
由于基于变换器的双向编码器表征技术(Bidirectional Encoder Representations from Transformers,BERT)的提出,改变了传统神经网络解决句子级文本情感分析问题的方法。目前的深度学习模型BERT本身学习模式为无监督学习,其需要依赖后续... 由于基于变换器的双向编码器表征技术(Bidirectional Encoder Representations from Transformers,BERT)的提出,改变了传统神经网络解决句子级文本情感分析问题的方法。目前的深度学习模型BERT本身学习模式为无监督学习,其需要依赖后续任务补全推理和决策环节,故存在缺乏目标领域知识的问题。提出一种多层协同卷积神经网络模型(Multi-level Convolutional Neural Network,MCNN),该模型能学习到不同层次的情感特征来补充领域知识,并且使用BERT预训练模型提供词向量,通过BERT学习能力的动态调整将句子真实的情感倾向嵌入模型,最后将不同层次模型输出的特征信息同双向长短期记忆网络输出信息进行特征融合后计算出最终的文本情感性向。实验结果表明即使在不同语种的语料中,该模型对比传统神经网络和近期提出的基于BERT深度学习的模型,情感极性分类的能力有明显提升。 展开更多
关键词 深度学习 文本情感分析 基于变换器的双向编码器表征技术(bert) 卷积神经网络(CNN) 协同结构
下载PDF
基于BERT的中文健康问句分类研究
5
作者 徐星昊 《电视技术》 2022年第3期67-70,共4页
现有的医学健康问句数据大多数都是短文本,但短文本存在特征稀疏的局限性。对此,提出一种融合特征的方法,首先通过基于变换器的双向编码器表征技术(Bidirectional Encoder Representations from Transformers,BERT)字符级特征的输出取... 现有的医学健康问句数据大多数都是短文本,但短文本存在特征稀疏的局限性。对此,提出一种融合特征的方法,首先通过基于变换器的双向编码器表征技术(Bidirectional Encoder Representations from Transformers,BERT)字符级特征的输出取平均并与BERT句子级特征的输出进行拼接,然后使用分类器进行分类。实验结果表明,本模型可以有效地提高模型提取特征的能力,在处理Kesci公众健康问句分类数据集上F1值达到83.92%,在处理中文健康公众问句数据集时F1值达到87%。 展开更多
关键词 基于变换器的双向编码器表征(bert) 健康问句 字符级特征 句子级特征
下载PDF
基于命名实体识别的水电工程施工安全规范实体识别模型
6
作者 陈述 张超 +2 位作者 陈云 张光飞 李智 《中国安全科学学报》 CAS CSCD 北大核心 2024年第9期19-26,共8页
为准确识别水电工程施工安全规范实体,通过预训练模型中双向编码器表征法(BERT)挖掘文本中丰富的语义信息,利用双向长短期记忆神经网络(BILSTM)提取规范实体语义特征,依靠条件随机场(CRF)分析实体之间的依赖关系,构建水电工程施工安全... 为准确识别水电工程施工安全规范实体,通过预训练模型中双向编码器表征法(BERT)挖掘文本中丰富的语义信息,利用双向长短期记忆神经网络(BILSTM)提取规范实体语义特征,依靠条件随机场(CRF)分析实体之间的依赖关系,构建水电工程施工安全规范的命名实体识别模型;以《水利水电工程施工安全防护技术规范》(SL714—2015)为例,计算命名实体识别模型精确率。结果表明:BERT-BILSTM-CRF模型准确率为94.35%,相比于3种传统方法,准确率显著提高。研究成果有助于水电工程施工安全规范知识智能管理,为施工安全隐患智能判别提供支撑。 展开更多
关键词 命名实体识别 水电工程施工 安全规范 双向编码器表征法(bert) 双向长短期记忆神经网络(BILSTM) 条件随机场(CRF)
下载PDF
基于BERT-BiLSTM-CRF的电力集控安全隐患数据处理
7
作者 张滈辰 屈红军 +1 位作者 牛雪莹 耿琴兰 《通信电源技术》 2023年第21期24-27,共4页
为了提高电力集控系统安全隐患数据处理的效果,提出一种基于来自变换器的双向编码器表示-双向长短期记忆网络-条件随机场(Bidirectional Encoder Representations from Transformers-Bidirectional Long Short Term Memory-Conditional ... 为了提高电力集控系统安全隐患数据处理的效果,提出一种基于来自变换器的双向编码器表示-双向长短期记忆网络-条件随机场(Bidirectional Encoder Representations from Transformers-Bidirectional Long Short Term Memory-Conditional Random Fields,BERT-BiLSTM-CRF)的电力集控安全隐患数据处理方法。构建电力集控隐患数据检测模型,应用改进长短时记忆网络(Long Short Term Memory,LSTM)来构建电力集控安全隐患数据修复网络,实现电力集控安全隐患数据处理。实验结果表明,采用所提方法能够更好地完成电力集控安全隐患数据检测与修复,应用效果较好。 展开更多
关键词 来自变换器的双向编码器表示(bert) 双向长短期记忆网络(BiLSTM) 条件随机场(CRF) 电力集控系统 安全隐患数据检测 数据修复
下载PDF
面向方面级情感分类的特征融合学习网络 被引量:1
8
作者 陈金广 赵银歌 马丽丽 《模式识别与人工智能》 CSCD 北大核心 2021年第11期1049-1057,共9页
在方面级情感分类任务中,现有方法强化方面词信息能力较弱,局部特征信息利用不充分.针对上述问题,文中提出面向方面级情感分类的特征融合学习网络.首先,将评论处理为文本、方面和文本-方面的输入序列,通过双向Transformer的表征编码器... 在方面级情感分类任务中,现有方法强化方面词信息能力较弱,局部特征信息利用不充分.针对上述问题,文中提出面向方面级情感分类的特征融合学习网络.首先,将评论处理为文本、方面和文本-方面的输入序列,通过双向Transformer的表征编码器得到输入的向量表示后,使用注意力编码器进行上下文和方面词的建模,获取隐藏状态,提取语义信息.然后,基于隐藏状态特征,采用方面转换组件生成方面级特定的文本向量表示,将方面信息融入上下文表示中.最后,对于方面级特定的文本向量通过文本位置加权模块提取局部特征后,与全局特征进行融合学习,得到最终的表示特征,并进行情感分类.在英文数据集和中文评论数据集上的实验表明,文中网络提升分类效果. 展开更多
关键词 方面级情感分类 双向Transformer的表征编码器(bert) 注意力编码器 局部特征提取 特定方面转换
下载PDF
面向上下文注意力联合学习网络的方面级情感分类模型 被引量:11
9
作者 杨玉亭 冯林 +1 位作者 代磊超 苏菡 《模式识别与人工智能》 EI CSCD 北大核心 2020年第8期753-765,共13页
针对现有的方面级情感分类模型存在感知方面词能力较弱、泛化能力较差等问题,文中提出面向上下文注意力联合学习网络的方面级情感分类模型(CAJLN).首先,利用双向Transformer的表征编码器(BERT)模型作为编码器,将文本句子预处理成句子、... 针对现有的方面级情感分类模型存在感知方面词能力较弱、泛化能力较差等问题,文中提出面向上下文注意力联合学习网络的方面级情感分类模型(CAJLN).首先,利用双向Transformer的表征编码器(BERT)模型作为编码器,将文本句子预处理成句子、句子对和方面词级输入序列,分别经过BERT单句和句子对分类模型,进行上下文、方面词级和句子对隐藏特征提取.再基于上下文和方面词级隐藏特征,建立上下文和方面词的多种注意力机制,获取方面特定的上下文感知表示.然后,对句子对隐藏特征和方面特定的上下文感知表示进行联合学习.采用Xavier正态分布对权重进行初始化,确保反向传播时参数持续更新,使CAJLN在训练过程中可以学习有用信息.在多个数据集上的仿真实验表明,CAJLN可有效提升短文本情感分类性能. 展开更多
关键词 方面级情感分类 双向Transformer的表征编码器(bert)模型 注意力机制 联合学习
下载PDF
基于BBCAL模型的法条自动推送方法 被引量:3
10
作者 张青 王肖霞 +1 位作者 孙豫峰 杨风暴 《计算机工程与设计》 北大核心 2022年第3期827-834,共8页
针对公益诉讼案件内容复杂难以理解,专业术语特征难以有效提取等问题,提出一种面向公益诉讼案件的法条自动推送模型。使用BERT模型获取案件词向量,引入BiLSTM模型挖掘词向量更深层次的含义,解决长期依赖问题,设计CNN不同的卷积核尺寸提... 针对公益诉讼案件内容复杂难以理解,专业术语特征难以有效提取等问题,提出一种面向公益诉讼案件的法条自动推送模型。使用BERT模型获取案件词向量,引入BiLSTM模型挖掘词向量更深层次的含义,解决长期依赖问题,设计CNN不同的卷积核尺寸提取不同粒度的专业术语特征信息,引入注意力机制,获取与当前任务最相关的特征。实验结果表明,在公益诉讼案件数据上,该方法的法条自动推送F1值为89.04%,相比传统的方法效果均有提高,验证了其可行性。 展开更多
关键词 公益诉讼案件 法条自动推送 基于变换器的双向编码器表征技术 卷积神经网络 注意力机制
下载PDF
面向工业生产的中文Text-to-SQL模型 被引量:1
11
作者 吕剑清 王先兵 +2 位作者 陈刚 张华 王明刚 《计算机应用》 CSCD 北大核心 2022年第10期2996-3002,共7页
英文自然语言查询转SQL语句(Text-to-SQL)任务的模型迁移到中文工业Text-to-SQL任务时,由于工业数据集的可解释差且比较分散,会出现数据库的表名列名等信息与问句中关键信息的表示形式不一致以及问句中的列名隐含在语义中等问题导致模... 英文自然语言查询转SQL语句(Text-to-SQL)任务的模型迁移到中文工业Text-to-SQL任务时,由于工业数据集的可解释差且比较分散,会出现数据库的表名列名等信息与问句中关键信息的表示形式不一致以及问句中的列名隐含在语义中等问题导致模型精确匹配率变低。针对迁移过程中出现的问题,提出了对应的解决方法并构建修改后的模型。首先,在数据使用过程中融入工厂元数据信息以解决表示形式不一致以及列名隐含在语义中的问题;然后,根据中文语言表达方式的特性,使用基于相对位置的自注意力模型直接通过问句以及数据库模式信息识别出where子句的value值;最后,根据工业问句查询内容的特性,使用微调后的基于变换器的双向编码器表示技术(BERT)对问句进行分类以提高模型对SQL语句结构预测的准确率。构建了一个基于铝冶炼行业的工业数据集,并在该数据集上进行实验验证。结果表明所提模型在工业测试集上的精确匹配率为74.2%,对比英文数据集Spider上各阶段主流模型的效果后可以看出,所提模型能有效处理中文工业Text-to-SQL任务。 展开更多
关键词 中文Text-to-SQL任务 工业数据集 元数据 自注意力模型 基于变换器的双向编码器表示技术
下载PDF
融合多种类型语法信息的属性级情感分析模型 被引量:2
12
作者 肖泽管 陈清亮 《计算机科学与探索》 CSCD 北大核心 2022年第2期395-402,共8页
属性级情感分析(ABSA)的目标是识别出句子中属性的情感倾向。现有的方法大多使用注意力机制隐性地建模属性与上下文中情感表达的关系,而忽略了使用语法信息。一方面,属性的情感倾向与句子中的情感表达有紧密的联系,利用句子的句法结构... 属性级情感分析(ABSA)的目标是识别出句子中属性的情感倾向。现有的方法大多使用注意力机制隐性地建模属性与上下文中情感表达的关系,而忽略了使用语法信息。一方面,属性的情感倾向与句子中的情感表达有紧密的联系,利用句子的句法结构可以更直接地对两者建模;另一方面,由于现有的基准数据集较小,模型无法充分学习通用语法知识,这使得它们难以处理复杂的句型和情感表达。针对以上问题,提出一种利用多种类型语法信息的神经网络模型。该模型采用基于依存句法树的图卷积神经网络(GCN),并利用句法结构信息直接匹配属性与其对应情感表达,缓解冗余信息对分类的干扰。同时,使用预训练模型BERT具有多种类型的语法信息的中间层表示作为指导信息,给予模型更多的语法知识。每一层GCN的输入结合上一层GCN的输出和BERT中间层指导信息。最后将属性在最后一层GCN的表示作为特征进行情感倾向分类。通过在SemEval 2014 Task4 Restaurant、Laptop和Twitter数据集上的实验结果表明,提出模型的分类效果超越了很多基准模型。 展开更多
关键词 属性级 情感分析 基于变换器的双向编码器表示技术(bert) 依存句法树 图卷积神经网络(GCN)
下载PDF
一种自动构建数据集的实体关系抽取方法 被引量:2
13
作者 房冬丽 陈正雄 +1 位作者 黄元稳 衡宇峰 《通信技术》 2021年第8期1862-1868,共7页
近年来,知识图谱领域中实体关系抽取技术得到快速发展,其准确性也大幅提升。然而,大部分文献都没有提供能够反映其内容的、直观的数据结构。依靠人工阅读文本产生实体、关系的方法,在多源、海量文档数据的今天越来越不能满足实际应用的... 近年来,知识图谱领域中实体关系抽取技术得到快速发展,其准确性也大幅提升。然而,大部分文献都没有提供能够反映其内容的、直观的数据结构。依靠人工阅读文本产生实体、关系的方法,在多源、海量文档数据的今天越来越不能满足实际应用的需求,因此提出一种抽取文本中实体关系的方法。该方法基于哈工大语言技术平台(Language Technology Plantform,LTP)和双向编码器(Bidirectional Encoder Representations from Transformer,BERT)模型,可对文本内容实现自动化解析,解决了数据集生成难的问题。此外,通过对BERT模型的优化调整,解决了以往实体关系的抽取需依赖大量资源计算的问题。 展开更多
关键词 实体 关系 抽取 语言技术平台(LTP) 双向编码器(bert)
下载PDF
基于图神经网络和BiGRU的商品推荐模型
14
作者 张云立 《信息与电脑》 2022年第20期161-164,共4页
个性化推荐是互联网经济的核心竞争力。为了解决推荐系统中数据稀疏性问题,提出基于图神经网络和BiGRU的商品推荐模型。该模型先利用来自变换器的双向编码器表征量(Bidirectional Encoder Representations from Transformers,BERT)模型... 个性化推荐是互联网经济的核心竞争力。为了解决推荐系统中数据稀疏性问题,提出基于图神经网络和BiGRU的商品推荐模型。该模型先利用来自变换器的双向编码器表征量(Bidirectional Encoder Representations from Transformers,BERT)模型进行预训练,再结合BiGRU与注意力机制提取评论文本的特征,并利用图神经网络提取用户与商品的高阶交互关系,最后将两种特征向量进行拼接以实现推荐预测。在多个亚马逊公开数据集上进行实验,使用均方误差(Mean Square Error,MSE)作为评价指标。实验结果表明,与已有的优秀基准模型相比,该模型有效提高了预测精度。 展开更多
关键词 推荐系统 图神经网络(GNN) BiGRU 来自变换器的双向编码器表征量(bert) 注意力机制
下载PDF
基于人工智能算法的商品归类研究与应用
15
作者 商志坚 熊涛 +4 位作者 刘强 李鼎一 钱胜胜 孙学忠 张明光 《中国口岸科学技术》 2024年第5期40-46,共7页
准确高效的商品归类有助于进出口企业提升通关速度、降低通关成本。为帮助进出口企业传统商品归类在效率和准确率等方面实现进一步提升,本文利用企业申报数据,构建了基于双向转换编码器表征(Bidirectional Encoder Representations from... 准确高效的商品归类有助于进出口企业提升通关速度、降低通关成本。为帮助进出口企业传统商品归类在效率和准确率等方面实现进一步提升,本文利用企业申报数据,构建了基于双向转换编码器表征(Bidirectional Encoder Representations from Transformers,BERT)与文本卷积神网络(Text Convolutional Neural Network,Text CNN)联合模型的商品归类算法,并完成归类系统开发及验证。以企业实际商品申报数据进行测试,归类准确率达95%以上,取得了较好的应用效果。 展开更多
关键词 商品归类 文本卷积神经网络(Text CNN) 双向转换编码器表征(bert)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部