近年来,面向机器视觉视频的研究和应用越来越广泛,这对此类视频的存储和传输都提出了巨大的挑战。视频编码标准如多功能视频编码(Versatile Video Coding,VVC)能实现高效的全分辨率压缩与重建,但是对机器视觉任务而言,这种压缩方法是有...近年来,面向机器视觉视频的研究和应用越来越广泛,这对此类视频的存储和传输都提出了巨大的挑战。视频编码标准如多功能视频编码(Versatile Video Coding,VVC)能实现高效的全分辨率压缩与重建,但是对机器视觉任务而言,这种压缩方法是有冗余的。因此,提出了一种在VVC编码过程中结合显著性检测的视频编码方法用于机器任务,用实例分割网络掩膜基于区域的卷积神经网络(Mask Region-based Convolutional Neural Network,Mask R-CNN)获得包含对象的二进制掩膜,并依此判定是否为感兴趣区域,指导VVC编码过程中编码树单元(Coding Tree Unit,CTU)的量化参数的偏移。实验证明,与VVC基线方法相比,所提方法可以在相似的检测精度下节省一定的比特率。展开更多
在学术和工程领域,如何在带宽严重受限的水声信道中获取具有一定可用性的彩色图像一直是一个备受关注的问题。文章提出了一种新的水下彩色图像传输方法,利用基于分级树集合分裂(Set Partitioning in Hierarchical Trees,SPIHT)算法的图...在学术和工程领域,如何在带宽严重受限的水声信道中获取具有一定可用性的彩色图像一直是一个备受关注的问题。文章提出了一种新的水下彩色图像传输方法,利用基于分级树集合分裂(Set Partitioning in Hierarchical Trees,SPIHT)算法的图像渐进传输和视觉显著性检测,在复杂多变、带宽严重受限的水声信道中获得可用性较好的水下彩色图像。该方法根据信噪比动态调整数据传输方案,并使用红色通道补偿来提高频域中显著性检测的准确性。然后使用SPIHT渐进传输图像,并在接收端通过导向滤波解决高降采样率引起的块效应,以获得高质量的水下图像。实验结果表明,所提出的方法在压缩水下彩色图像方面具有一定的适用性。展开更多
文摘近年来,面向机器视觉视频的研究和应用越来越广泛,这对此类视频的存储和传输都提出了巨大的挑战。视频编码标准如多功能视频编码(Versatile Video Coding,VVC)能实现高效的全分辨率压缩与重建,但是对机器视觉任务而言,这种压缩方法是有冗余的。因此,提出了一种在VVC编码过程中结合显著性检测的视频编码方法用于机器任务,用实例分割网络掩膜基于区域的卷积神经网络(Mask Region-based Convolutional Neural Network,Mask R-CNN)获得包含对象的二进制掩膜,并依此判定是否为感兴趣区域,指导VVC编码过程中编码树单元(Coding Tree Unit,CTU)的量化参数的偏移。实验证明,与VVC基线方法相比,所提方法可以在相似的检测精度下节省一定的比特率。
文摘在学术和工程领域,如何在带宽严重受限的水声信道中获取具有一定可用性的彩色图像一直是一个备受关注的问题。文章提出了一种新的水下彩色图像传输方法,利用基于分级树集合分裂(Set Partitioning in Hierarchical Trees,SPIHT)算法的图像渐进传输和视觉显著性检测,在复杂多变、带宽严重受限的水声信道中获得可用性较好的水下彩色图像。该方法根据信噪比动态调整数据传输方案,并使用红色通道补偿来提高频域中显著性检测的准确性。然后使用SPIHT渐进传输图像,并在接收端通过导向滤波解决高降采样率引起的块效应,以获得高质量的水下图像。实验结果表明,所提出的方法在压缩水下彩色图像方面具有一定的适用性。