期刊文献+
共找到72篇文章
< 1 2 4 >
每页显示 20 50 100
基于空间密度的群以噪声发现聚类算法研究 被引量:17
1
作者 毕方明 王为奎 陈龙 《南京大学学报(自然科学版)》 CSCD 北大核心 2012年第4期491-498,共8页
针对基于密度的群以噪声发现聚类算法(density-based spatial clustering of applications withnoise,DBSCAN)的所需内存及I/O消耗大;空间聚类的密度不均匀时,采用全局统一的变量,聚类质量较差;对于输入参数敏感性较高等三个不足进行了... 针对基于密度的群以噪声发现聚类算法(density-based spatial clustering of applications withnoise,DBSCAN)的所需内存及I/O消耗大;空间聚类的密度不均匀时,采用全局统一的变量,聚类质量较差;对于输入参数敏感性较高等三个不足进行了改进.首先根据数据的空间分布特性,将整个数据空间划分为多个较小的分区,使分区的局部密度相对更均匀;然后将每个局部分区运用改进的DBSCAN算法进行聚类,改进的算法可以根据空间数据的分布,对一个中心点自适应的选取近邻,并对这些近邻点进行取样、扩展,有效提高了算法的准确性和效率;接着将所得到的聚类结果按照合并规则进行合并.最后通过仿真实验,验证了改进的DBSCAN算法解决了内存消耗过大、聚类质量差及全局参数敏感的问题. 展开更多
关键词 数据挖掘 空间 基于密度的群以噪声发现 数据分区 参数自适应
下载PDF
基于密度噪声应用空间聚类算法的机载激光雷达建筑物点云提取与单体化 被引量:14
2
作者 吕富强 唐诗华 +1 位作者 何广焕 蒙金龙 《科学技术与工程》 北大核心 2022年第9期3446-3452,共7页
针对机载激光雷达建筑物点云提取过程中自动化提取困难,以及提取后的建筑物单体化过程烦琐等问题,提出一种基于密度噪声应用空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法的机载雷达建筑物点云提... 针对机载激光雷达建筑物点云提取过程中自动化提取困难,以及提取后的建筑物单体化过程烦琐等问题,提出一种基于密度噪声应用空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法的机载雷达建筑物点云提取与单体化的方法。该方法对预处理后的点云数据基于DBSCAN算法进行去噪与初步的提取,通过三维密度聚类,将建筑物的点云进行提取与自动单体化。根据建筑物点云密度的特点,进行二维的密度聚类,结合数字正射影像图(digital orthophoto map,DOM)进行点云分割。最后将处理后的点云数据进行优化处理,并将建筑物单体化簇类进行提取,得到单体化建筑物点云。结果表明:提取的建筑物点云数量正确率为97.36%,轮廓边长的中误差为0.077,可以有效地提取出建筑物点云并将其单体化。 展开更多
关键词 机载激光雷达 建筑物点云 基于密度噪声应用空间(dbscan) 密度 点云提取 单体化
下载PDF
Greedy DBSCAN:一种针对多密度聚类的DBSCAN改进算法 被引量:45
3
作者 冯振华 钱雪忠 赵娜娜 《计算机应用研究》 CSCD 北大核心 2016年第9期2693-2696,2700,共5页
针对基于密度的DBSCAN算法对于输入参数敏感、无法聚类多密度数据集等问题,提出了一种贪心的DBSCAN改进算法(greedy DBSCAN)。算法仅需输入一个参数Min Pts,采用贪心策略自适应地寻找Eps半径参数进行簇发现,利用相对稠密度识别和判定噪... 针对基于密度的DBSCAN算法对于输入参数敏感、无法聚类多密度数据集等问题,提出了一种贪心的DBSCAN改进算法(greedy DBSCAN)。算法仅需输入一个参数Min Pts,采用贪心策略自适应地寻找Eps半径参数进行簇发现,利用相对稠密度识别和判定噪声数据,在随机寻找核对象过程中使用邻域查询方式提升算法效率,最终通过簇的合并产生最终的聚类结果。实验结果表明,改进后的算法能有效地分离噪声数据,识别多密度簇,聚类准确度较高。 展开更多
关键词 密度 贪心策略 相对稠密度 邻域查询 噪声数据 dbscan
下载PDF
一种基于密度的空间数据流在线聚类算法 被引量:28
4
作者 于彦伟 王沁 +1 位作者 邝俊 何杰 《自动化学报》 EI CSCD 北大核心 2012年第6期1051-1059,共9页
为了解决空间数据流中任意形状簇的聚类问题,提出了一种基于密度的空间数据流在线聚类算法(On-line density-based clustering algorithm for spatial data stream,OLDStream),该算法在先前聚类结果上聚类增量空间数据,仅对新增空间点... 为了解决空间数据流中任意形状簇的聚类问题,提出了一种基于密度的空间数据流在线聚类算法(On-line density-based clustering algorithm for spatial data stream,OLDStream),该算法在先前聚类结果上聚类增量空间数据,仅对新增空间点及其满足核心点条件的邻域数据做局部聚类更新,降低聚类更新的时间复杂度,实现对空间数据流的在线聚类.OLDStream算法具有快速处理大规模空间数据流、实时获取全局任意形状的聚类簇结果、对数据流的输入顺序不敏感、并能发现孤立点数据等优势.在真实数据和合成数据上的综合实验验证了算法的聚类效果、高效率性和较高的可伸缩性,同时实验结果的统计分析显示仅有4%的空间点消耗最坏运行时间,对每个空间点的平均聚类时间约为0.033ms. 展开更多
关键词 空间数据挖掘 数据流 基于密度 在线算法 噪声处理
下载PDF
一种基于密度的空间聚类算法
5
作者 王晓洁 方丽娜 《新乡学院学报》 2008年第1期59-61,共3页
针对DBSCAN算法I/O开销和内存消耗大的缺陷,提出了基于层次合并的密度算法,基于密度的空间聚类算法可以有效地过滤噪声和孤立点数据,该算法在对于处理较大数据集上具有较大优势。
关键词 空间算法 密度 dbscan 较大数据集
下载PDF
基于密度的空间聚类算法在照明运维中的应用
6
作者 李今 石晓润 《软件导刊》 2017年第4期148-151,共4页
城市照明数字化综合管理系统应用过程中会产生大量设施维护事件记录,这些数据在类型和空间分布上蕴含大量信息,对这些数据进行分析并加以应用很有必要。对基于密度的空间聚类算法(DBSCAN)进行了研究。介绍了DBSCAN算法的基本概念和原理... 城市照明数字化综合管理系统应用过程中会产生大量设施维护事件记录,这些数据在类型和空间分布上蕴含大量信息,对这些数据进行分析并加以应用很有必要。对基于密度的空间聚类算法(DBSCAN)进行了研究。介绍了DBSCAN算法的基本概念和原理,将该算法应用于城市照明管理业务数据中,对照明设施维护热点分布进行聚类分析,根据聚类结果为城市照明运维管理区域划分和运维资源规划提供参考依据。 展开更多
关键词 空间 基于密度 dbscan 照明设施维护
下载PDF
基于密度的面板数据聚类分析 被引量:7
7
作者 杨娟 谢远涛 《统计与信息论坛》 CSSCI 2014年第2期23-28,共6页
研究面板数据聚类问题过程中,在相似性度量上,用Logistic回归模型构造相似系数和非对称相似矩阵。在聚类算法上,目前的聚类算法只适用于对称的相似矩阵。在非对称相似矩阵的聚类算法上,采用最佳优先搜索和轮廓系数,改进DBSCAN聚类方法,... 研究面板数据聚类问题过程中,在相似性度量上,用Logistic回归模型构造相似系数和非对称相似矩阵。在聚类算法上,目前的聚类算法只适用于对称的相似矩阵。在非对称相似矩阵的聚类算法上,采用最佳优先搜索和轮廓系数,改进DBSCAN聚类方法,提出BF—DBSCAN方法。通过实例分析,比较了BF—DBSCAN和DBSCAN方法的聚类结果,以及不同参数设置对BF—DBSCAN聚类结果的影响,验证了该方法的有效性和实用性。 展开更多
关键词 面板数据 LOGISTIC回归模型 基于密度的应用噪声的空间 最佳优先搜索 轮廓系数
下载PDF
参数自适应的网格密度聚类算法 被引量:3
8
作者 郑诚 曹杨 《计算机应用研究》 CSCD 北大核心 2019年第11期3278-3281,3309,共5页
针对网格密度聚类算法存在的网格宽度和密度阈值难以确定以及聚类精度不高的缺陷,提出了一种参数自适应的网格密度聚类算法。定义了数据集标准化离散度的概念,运用数据集的自然分布信息自适应地计算出每一维较优的分割宽度,对不同的密... 针对网格密度聚类算法存在的网格宽度和密度阈值难以确定以及聚类精度不高的缺陷,提出了一种参数自适应的网格密度聚类算法。定义了数据集标准化离散度的概念,运用数据集的自然分布信息自适应地计算出每一维较优的分割宽度,对不同的密度阈值统计其噪声样本对象的数量,绘制了噪声曲线,从噪声曲线中获得最佳的密度阈值,而且增加了类簇边缘处理技术,进一步提高了聚类的质量。仿真实验表明,改进后的算法可获得更好的聚类效果。 展开更多
关键词 网格密度 空间划分 噪声曲线
下载PDF
基于AP密度聚类方法的雷达辐射源信号识别 被引量:2
9
作者 王美玲 张复春 杨承志 《舰船电子对抗》 2012年第3期1-5,共5页
未知雷达辐射源信号识别一直是雷达对抗情报分析中的难题。针对基于密度的聚类算法在处理不均匀样本时识别率较低的缺陷,将该算法与亲和传递(AP)聚类算法结合,提出一种基于AP密度聚类的识别方法。该方法先利用AP聚类方法对数据样本进行... 未知雷达辐射源信号识别一直是雷达对抗情报分析中的难题。针对基于密度的聚类算法在处理不均匀样本时识别率较低的缺陷,将该算法与亲和传递(AP)聚类算法结合,提出一种基于AP密度聚类的识别方法。该方法先利用AP聚类方法对数据样本进行初步聚类,再设定相关参数,运用基于密度的带有噪声的空间聚类(DBSCAN)算法进行二次聚类。相对于原样本,初始聚类结果分布具有一定的代表性,容易找到适合DBSCAN方法的参数值。测试表明该方法具有较高的识别率。 展开更多
关键词 辐射源识别 亲和传递 基于密度的带有噪声的空间
下载PDF
基于AP密度聚类方法的雷达辐射源信号识别
10
作者 郁平 高岚岚 +1 位作者 任浩 贾英杰 《矿业工程》 CAS 2012年第4期1-2,共2页
未知雷达辐射源信号识别一直是雷达对抗情报分析中的难题。针对基于密度的聚类算法在处理不均匀样本时识别率较低的缺陷,将该算法与亲和传递(AP)聚类算法结合,提出一种基于AP密度聚类的识别方法。该方法先利用AP聚类方法对数据样本进... 未知雷达辐射源信号识别一直是雷达对抗情报分析中的难题。针对基于密度的聚类算法在处理不均匀样本时识别率较低的缺陷,将该算法与亲和传递(AP)聚类算法结合,提出一种基于AP密度聚类的识别方法。该方法先利用AP聚类方法对数据样本进行初步聚类,再设定相关参数,运用基于密度的带有噪声的空间聚类(DBSCAN)算法进行二次聚类。相对于原样本,初始聚类结果分布具有一定的代表性,容易找到适合DBSCAN方法的参数值。测试表明该方法具有较高的识别率。 展开更多
关键词 辐射源识别 亲和传递 基于密度的带有噪声的空间
下载PDF
基于网络化密度聚类的船舶停泊点数据挖掘 被引量:1
11
作者 叶仁道 黄靓莹 《水运管理》 2017年第8期20-23,共4页
为获取船舶停泊行为规律,以大连港、天津港、青岛港、德国罗斯托克港、巴西桑托斯港和荷兰格罗宁根港等全球六大港口水域为例,基于Hive数据仓库和R语言平台,利用网格化DBSCAN算法,提取船舶在各港口水域停泊点位置、面积等信息,进而基于... 为获取船舶停泊行为规律,以大连港、天津港、青岛港、德国罗斯托克港、巴西桑托斯港和荷兰格罗宁根港等全球六大港口水域为例,基于Hive数据仓库和R语言平台,利用网格化DBSCAN算法,提取船舶在各港口水域停泊点位置、面积等信息,进而基于停泊点可视化结果,验证这六大港口实时可视化结果与基于历史数据挖掘结果相符。研究成果有助于保障港口水域船舶安全通航,亦为船舶交通管理系统智能化奠定基础,从而推动港口行业持续、健康发展。 展开更多
关键词 船舶自动识别系统(AIS) 数据挖掘技术 Hive数据仓库 网格化 空间密度(dbscan)
下载PDF
基于传递熵密度聚类的用户窃电识别方法 被引量:14
12
作者 刘康 李彬 +4 位作者 薛阳 杨艺宁 徐英辉 刘爱国 苏盛 《中国电机工程学报》 EI CSCD 北大核心 2022年第20期7535-7545,共11页
在配电线路/台区中,接入用户的用电量与线损电量间存在因果关系,正常用户电量变化对线损电量的影响有限,而窃电用户的用电量对线损电量的影响异于正常用户。传递熵能衡量变量间的信息传递,是评价因果性的重要指标。该文提出基于传递熵... 在配电线路/台区中,接入用户的用电量与线损电量间存在因果关系,正常用户电量变化对线损电量的影响有限,而窃电用户的用电量对线损电量的影响异于正常用户。传递熵能衡量变量间的信息传递,是评价因果性的重要指标。该文提出基于传递熵密度聚类的用户窃电识别方法。首先运用传递熵指向性筛选出对线路/台区线损电量因果关联较强的用户;然后构建其与线损电量的传递熵模型,计算不同时长的用户用电量对线损电量的传递熵值,以衡量其信息传递量;再结合密度聚类算法,将传递熵曲线偏离正常用户类簇的识别为与线损有强因果性的窃电用户。最后,基于已查证的高损台区和长距离配电线路实际数据,验证所提方法的有效性。 展开更多
关键词 窃电 传递熵 基于密度噪声应用空间 因果关联 线损电量
下载PDF
基于卡尔曼滤波和改进DBSCAN聚类组合的GPS定位算法 被引量:7
13
作者 葛倩 侯守明 赵文涛 《全球定位系统》 CSCD 2021年第1期28-35,共8页
实时获取智能移动终端的地理位置信息是增强现实(AR)实景智能导航系统实现的关键,为了提高智能终端GPS定位的精度,提出了一种基于卡尔曼滤波与改进的具有噪声的基于密度的聚类方法(DBSCAN)结合的GPS组合定位优化方法.通过对GPS系统采集... 实时获取智能移动终端的地理位置信息是增强现实(AR)实景智能导航系统实现的关键,为了提高智能终端GPS定位的精度,提出了一种基于卡尔曼滤波与改进的具有噪声的基于密度的聚类方法(DBSCAN)结合的GPS组合定位优化方法.通过对GPS系统采集到的位置坐标数据进行卡尔曼滤波,去除较大的数据波动,控制定位误差范围,采用DBSCAN聚类算法进行分类去噪和二次聚类,对类中数据求得算术均值和类间数据总数进行加权求重心,确定位置坐标.实验结果表明,提出的算法能有效提高GPS单点定位精度,减少定位误差,同时很好地满足了AR实景智能导航系统实时性和鲁棒性的要求. 展开更多
关键词 GPS 定位精度 卡尔曼滤波 具有噪声的基于密度方法(dbscan) 联合定位
下载PDF
基于DBSCAN选择性聚类集成的岩体结构面优势产状分组方法 被引量:7
14
作者 张化进 吴顺川 韩龙强 《岩土力学》 EI CAS CSCD 北大核心 2022年第6期1585-1595,共11页
针对单个结构面聚类模型存在误判或漏选风险、难以有效识别噪点与孤值等问题,提出利用具有噪声的基于密度的聚类(DBSCAN)算法进行选择性聚类集成的岩体结构面优势产状分组方法。首先,将结构面产状进行空间坐标转换,以单位法向量的夹角... 针对单个结构面聚类模型存在误判或漏选风险、难以有效识别噪点与孤值等问题,提出利用具有噪声的基于密度的聚类(DBSCAN)算法进行选择性聚类集成的岩体结构面优势产状分组方法。首先,将结构面产状进行空间坐标转换,以单位法向量的夹角正弦值作为相似性度量标准。进而,基于DBSCAN算法构建一定数量具有差异性的基聚类器,借助选择性聚类集成技术挑选出部分优异的基聚类器。最后采用一致性集成技术融合这些基聚类器,获得一个高可靠度的选择性聚类集成结果。将该方法应用于DIPS软件数据集与松塔水电站坝址区结构面勘察中,检验了该方法的可行性与有效性。研究结果表明:该方法聚类效果显著优于常见聚类算法,聚类结果客观合理,不仅能有效标识出噪点与孤值,还克服了单个模型易过分割或欠分割的不足。该研究成果对准确确定结构面优势组具有一定的工程价值。 展开更多
关键词 岩体结构面 优势产状 集成 具有噪声的基于密度(dbscan) 轮廓系数
下载PDF
一种基于目标点云分布特性的动态聚类算法
15
作者 李彩虹 何晨阳 +1 位作者 高锋 陈佳欣 《汽车安全与节能学报》 CAS CSCD 北大核心 2024年第2期261-267,共7页
激光雷达在自动驾驶系统的目标检测任务中发挥着重要作用,但其扫描机理会使得点云分布不均匀,常规聚类算法由于参数固定会导致较多的错误聚类。为解决该问题,该文以椭圆形状作为邻域空间,设计基于采样点位置的邻域自适应调整策略,提出... 激光雷达在自动驾驶系统的目标检测任务中发挥着重要作用,但其扫描机理会使得点云分布不均匀,常规聚类算法由于参数固定会导致较多的错误聚类。为解决该问题,该文以椭圆形状作为邻域空间,设计基于采样点位置的邻域自适应调整策略,提出一种基于目标点云分布特性的动态聚类算法。通过正确聚类、过聚类等综合结果评估算法的性能,在KITTI数据集上进行了数值分析得到算法参数,并在校园环境中进行了实车对比实验。结果表明:所提算法能减少基于密度的噪声应用空间聚类(DBSCAN)中固定邻域所造成的70.60%过聚类、49.76%欠聚类等错误结果,从而有效提高算法的综合聚类性能。 展开更多
关键词 智能汽车 目标检测 激光雷达 点云 KITTI数据集 基于密度噪声应用空间(dbscan)
下载PDF
基于时空约束密度聚类的职住地识别方法 被引量:2
16
作者 苗登逢 肖跃雷 《计算机应用研究》 CSCD 北大核心 2022年第6期1779-1784,共6页
为了从移动终端位置数据中精准识别居民职住地,提出了一种基于时空约束密度聚类的职住地识别方法。首先,利用基于K-means的DBSCAN(density-based spatial clustering of applications with noise)时空驻点聚类过程将居民多天的原始轨迹... 为了从移动终端位置数据中精准识别居民职住地,提出了一种基于时空约束密度聚类的职住地识别方法。首先,利用基于K-means的DBSCAN(density-based spatial clustering of applications with noise)时空驻点聚类过程将居民多天的原始轨迹点分成不同的时空驻点簇;然后,利用基于速度阈值的停留点簇和移动点簇识别过程将居民的每一个时空驻点簇区分为停留点簇或移动点簇;接着,利用基于K近距离的DBSCAN重要停留点聚类过程将居民的停留点分成不同的重要停留点簇;最后,利用基于KD-tree优化的KNN(K-nearest neighbor)职住地识别过程将居民的每个重要停留点识别为工作地、居住地、职住同一区域或兴趣地点区域。实验结果表明,该方法的每个过程都是合理有效的,并且最终的职住地识别效果要优于时间阈值法、累加时间法和信息熵法。 展开更多
关键词 密度 职住地识别 K-均值 基于密度噪声空间算法 KD-TREE K-近邻
下载PDF
DBSCAN聚类和改进的双边滤波算法在点云去噪中的应用 被引量:20
17
作者 曲金博 王岩 赵琪 《测绘通报》 CSCD 北大核心 2019年第11期89-92,共4页
采用基于密度的DBSCAN聚类算法对点云数据进行去噪处理,然后通过改进的双边滤波方法进行光顺处理实现点云平滑效果,最终的结果不仅有效去除了噪声点,还保留了点云模型的特征。以沈阳民国时期代表性的建筑--沈阳金融博物馆为试验模型进... 采用基于密度的DBSCAN聚类算法对点云数据进行去噪处理,然后通过改进的双边滤波方法进行光顺处理实现点云平滑效果,最终的结果不仅有效去除了噪声点,还保留了点云模型的特征。以沈阳民国时期代表性的建筑--沈阳金融博物馆为试验模型进行试验,结果表明:通过DBSCAN聚类算法处理后得到的点云数据,再经改进的双边滤波处理所得到的数据远远比原点云数据直接运用改进的双边滤波处理得到的数据精度高,点云去噪效果更好。 展开更多
关键词 dbscan算法 双边滤波方法 噪声 点云 密度
下载PDF
基于密度聚类算法的电力通信监测分析 被引量:8
18
作者 张明明 刘文盼 +1 位作者 宋浒 夏飞 《自动化仪表》 CAS 2022年第11期73-78,共6页
为解决传统基于密度的噪声应用空间聚类(DBSCAN)算法对输入参数设置敏感,以及传统的边缘计算框架计算成本高、计算时间过长等问题,创新性地提出了一种单遍权重K-means(SPWK)聚类算法。构建了电力通信网络故障及入侵监测模型,并将深度强... 为解决传统基于密度的噪声应用空间聚类(DBSCAN)算法对输入参数设置敏感,以及传统的边缘计算框架计算成本高、计算时间过长等问题,创新性地提出了一种单遍权重K-means(SPWK)聚类算法。构建了电力通信网络故障及入侵监测模型,并将深度强化学习技术与边缘计算相结合,以降低计算成本和计算时长。仿真试验结果表明:SPWK聚类算法的迭代次数更少,平均执行时间以及总聚类时间分别低于其他算法67.5%、37.5%,加速比高出76.4%以上,聚类效率更高;边缘计算优化方法的服务器占用时间以及计算等待时间分别低于其他算法70.4%以上和79.2%以上,性能更优;电力通信监测模型对异常数据的平均识别准确率高出其他算法23.86%以上,入侵检测率高出其他算法4.8%以上,误报率降低65.4%以上,具备优异的检测性能。综上所述,所提故障及入侵监测模型以及边缘计算优化方法的性能均优于其他流行方法,适合在电力通信监测研究中推广使用。 展开更多
关键词 基于密度噪声应用空间算法 单遍权重K-means算法 边缘计算 电力通信监测 故障检测 入侵检测
下载PDF
一种新的基于密度的自适应取样聚类算法
19
作者 刘嘉嘉 杜习英 《电脑知识与技术(过刊)》 2007年第2期478-480,共3页
空间数据聚类是一种很重要的数据挖掘技术,它可以从大量的空间数据中提取到知识,并且有着广泛的用途,空间数据库里的数据分布对聚类结果的影响很大,很少有算法在聚类时考虑到了空间数据的分布.在本文中,提出了一种新的自适应基于密度的... 空间数据聚类是一种很重要的数据挖掘技术,它可以从大量的空间数据中提取到知识,并且有着广泛的用途,空间数据库里的数据分布对聚类结果的影响很大,很少有算法在聚类时考虑到了空间数据的分布.在本文中,提出了一种新的自适应基于密度的取样聚类算法ADBSC(adaptive density-based sampling clustering),它可以根据空间数据的分布,对一个中心点自适应的选取近邻,并对这些近邻点进行取样,扩展,有效提高了聚类分析的准确性和效率.本文结尾部分,时模拟数据进行了一系列的实验,对其和DBSCAN算法做了比较,证明了ADBSC的优越性. 展开更多
关键词 密度 取样 自适应 dbscan 空间数据
下载PDF
基于密度聚类的低压台区归属关系及相位识别方法 被引量:1
20
作者 闫东辉 《南方能源建设》 2023年第5期149-156,共8页
[目的]供电部门记录的正确的拓扑信息有助于工作人员监测电网信息,分析故障,优化电网运行以满足低压配电台区精益化、智能化管理的需要。目前,各式新型用电设备及用户的加入使低压配电网络结构呈现出持续变化的特征,线路维护成本被大大... [目的]供电部门记录的正确的拓扑信息有助于工作人员监测电网信息,分析故障,优化电网运行以满足低压配电台区精益化、智能化管理的需要。目前,各式新型用电设备及用户的加入使低压配电网络结构呈现出持续变化的特征,线路维护成本被大大提高。[方法]为此,提出基于密度聚类的低压台区归属关系识别方法。首先,提取智能电表有效电压数据生成高维时序电压矩阵;其次,采用t分布随机近邻嵌入方法(t-distributed Stochastic Neighbor Embedding,t-SNE)对高维时序电压数据进行特征提取与降维;然后,应用基于数据密度的噪声应用空间聚类方法(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)对降维后的数据进行聚类分析,实现低压用户台区归属信息的识别;最后,对海南省三亚市某台区实际数据进行分析,并将所提方法与其他主流的拓扑识别算法进行对比。[结果]分析结果表明所提方法能够达到95%以上的台区识别准确率,高于目前其他主流的拓扑信息识别方法。[结论]文章中的方法在解决此类问题上具有有效性与优势性,可以为实际工程应用提供参考,为低压台区拓扑信息识别领域提供不一样的研究思路。 展开更多
关键词 低压台区 电压数据信息 t分布随机近邻嵌入方法 基于数据密度的噪声应用空间方法 台区归属关系识别 相位识别
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部