在充电式混合动力电动汽车(plug-in hybrid electric vehicle,PHEV)和电动汽车(electric vehicle,EV)中,对电池进行精确、可靠的荷电状态估计(state of charge,SOC)非常重要。传统估计方法存在计算量大、估计不精确等缺点,提出一种平方...在充电式混合动力电动汽车(plug-in hybrid electric vehicle,PHEV)和电动汽车(electric vehicle,EV)中,对电池进行精确、可靠的荷电状态估计(state of charge,SOC)非常重要。传统估计方法存在计算量大、估计不精确等缺点,提出一种平方根无迹卡尔曼滤波(square root unscented Kalman filter,SRUKF)算法对SOC进行实时估计及更新。利用无迹变换(unscented transformation,UT)精确估计系统方程的均值和协方差,使估算值达到二阶精度。利用平方根算法保证状态协方差的半正定性,提高数字计算的稳定性。通过实验对比,验证了该算法的有效性。结果表明,该方法可使状态估计值具有较小的误差和快速跟随性,满足了SOC估计的实际需求。展开更多
为提高锂离子电池荷电状态(state of charge,SOC)的估计精度并准确估计健康状态(state of health,SOH),以二阶RC等效电路模型为研究对象,基于Sage-Husa自适应滤波的思想,对传统的平方根无迹卡尔曼滤波(square-root unscented Kalma...为提高锂离子电池荷电状态(state of charge,SOC)的估计精度并准确估计健康状态(state of health,SOH),以二阶RC等效电路模型为研究对象,基于Sage-Husa自适应滤波的思想,对传统的平方根无迹卡尔曼滤波(square-root unscented Kalman filter,SRUKF)进行改进,提出一种自适应SRUKF(adaptive square-root unscented Kalman filter,ASRUKF)算法,该算法通过对状态方差阵和噪声方差阵平方根的递推估算,确保了状态和噪声方差阵的对称性和非负定性。验证结果显示,相比于SRUKF算法,ASRUKF算法能够得到精度更高的SOC估计值,并在FUDS工况下将最大SOC估计误差降低4%。针对电池欧姆内阻和容量参数随着电池的老化而变化的现象,对内阻和容量进行实时在线估计,在此基础上完成对SOH参数的预测。验证结果表明,联合估计算法对电池的欧姆电阻和容量有一个较好的估计,进一步提升了电池状态的估计精度。展开更多
荷电状态(state of charge,SOC)估算技术是锂电池管理系统中最重要的功能之一。针对磷酸铁锂电池组展开研究,以准确估计电池组中各单体荷电状态为目的,首先采用一阶戴维南(Thevenin)模型结合安时法建立综合电池模型;采用一种平方根采样...荷电状态(state of charge,SOC)估算技术是锂电池管理系统中最重要的功能之一。针对磷酸铁锂电池组展开研究,以准确估计电池组中各单体荷电状态为目的,首先采用一阶戴维南(Thevenin)模型结合安时法建立综合电池模型;采用一种平方根采样点卡尔曼滤波(square root sigma point Kalman filter,SRSPKF)方法,配合在线递推最小二乘(recursive least square,RLS)算法,同时实现对电池等效模型参数的辨识以及对电池荷电状态的估算。理论上讲,SRSPKF算法使系统状态直接以其方差的平方根形式传播,可显著降低常规Sigma点卡尔曼滤波器(sigma points Kalman filter,SPKF)算法的复杂性。实验结果表明,相对SPKF而言,SRSPKF具有更强的状态估计误差抑制能力,采用SRSPKF可以获得比SPKF更准确的SOC估计结果。展开更多
文摘荷电状态(state of charge,SOC)估算技术是锂电池管理系统中最重要的功能之一。针对磷酸铁锂电池组展开研究,以准确估计电池组中各单体荷电状态为目的,首先采用一阶戴维南(Thevenin)模型结合安时法建立综合电池模型;采用一种平方根采样点卡尔曼滤波(square root sigma point Kalman filter,SRSPKF)方法,配合在线递推最小二乘(recursive least square,RLS)算法,同时实现对电池等效模型参数的辨识以及对电池荷电状态的估算。理论上讲,SRSPKF算法使系统状态直接以其方差的平方根形式传播,可显著降低常规Sigma点卡尔曼滤波器(sigma points Kalman filter,SPKF)算法的复杂性。实验结果表明,相对SPKF而言,SRSPKF具有更强的状态估计误差抑制能力,采用SRSPKF可以获得比SPKF更准确的SOC估计结果。