Quality of experience(Qo E), which is very critical for the experience of users in wireless networks, has been extensively studied. However, due to different human perceptions, quantifying the effective capacity of wi...Quality of experience(Qo E), which is very critical for the experience of users in wireless networks, has been extensively studied. However, due to different human perceptions, quantifying the effective capacity of wireless network subject to diverse Qo E is very difficult, which leads to many new challenges regarding Qo E guarantees in wireless networks. In this paper, we formulate the Qo E guarantees model for cellular wireless networks. Based on the model, we convert the effective capacity maximization problem into the equivalent convex optimization problem. Then, we develop the optimal Qo E-driven power allocation scheme, which can maximize the effective capacity. The obtained simulation results verified our proposed power allocation scheme, showing that the effective capacity can be significantly increased compared with that of traditional Qo E guarantees based schemes.展开更多
In view of the flaws of component-based software (CBS) reliability modeling and analysis, the low recognition degree of debugging process, too many assumptions and difficulties in obtaining the solution, a CBS relia...In view of the flaws of component-based software (CBS) reliability modeling and analysis, the low recognition degree of debugging process, too many assumptions and difficulties in obtaining the solution, a CBS reliability simulation process is presented incorporating the imperfect debugging and the limitation of debugging resources. Considering the effect of imperfect debugging on fault detec- tion and correction process, a CBS integration testing model is sketched by multi-queue muhichannel and finite server queuing model (MMFSQM). Compared with the analytical method based on pa- rameters and other nonparametric approaches, the simulation approach can relax more of the usual reliability modeling assumptions and effectively expound integration testing process of CBS. Then, CBS reliability process simulation procedure is developed accordingly. The proposed simulation ap- proach is validated to be sound and effective by simulation experiment studies and analysis.展开更多
1. Background The virtual reality (VR) technology is now at the frontier of modern information science. VR is based on computer graphics, computer vision, and other fresh air topics in today's computer technology....1. Background The virtual reality (VR) technology is now at the frontier of modern information science. VR is based on computer graphics, computer vision, and other fresh air topics in today's computer technology. Nowadays the VR technology has been applied successfully in variety of fields such as military simulation, industry, medical training and visualization, environment protection and entertainment.展开更多
The complete description of outdoor luminous and thermal environment is the basis for daylight utilization design with simulation tools.Nevertheless,Typical Meteorological Year(TMY)and generation method specifically d...The complete description of outdoor luminous and thermal environment is the basis for daylight utilization design with simulation tools.Nevertheless,Typical Meteorological Year(TMY)and generation method specifically developed for the energy simulation of daylight-utilized buildings is still unavailable currently.Luminous environment parameters have not been taken into consideration in existing TMY generation methods.In this study,the feasibility of existing TMY generation process has been examined.A generic office model implementing sided window daylighting is established.Historical meteorological data of Hong Kong region from 1979 to 2007 have been collected and three existing weighting schemes are applied during the Typical Meteorological Month(TMM)selection procedures.Three TMY files for Hong Kong are generated and used to conduct integrated Climate-Based Daylight Modeling and building energy simulation.The result demonstrates that,on annual basis,the energy consumption results obtained from the generated TMY files are in good agreements with the long-term mean annual value.The maximum deviation of annual energy consumptions for the generated TMY files is only 1.8%.However,further analysis on monthly basis shows that all the three generated TMY files fail to fully represent the long-term monthly mean level.The maximum deviation of monthly energy consumptions for the generated TMY files can reach up to 11%.As the energy performance daylight utilization is subject to weather change,analysis on daily and monthly energy level is important,especially during design stage.The deficiency of existing TMM selection process and TMY generation method indicates the necessity to develop a corresponding typical weather data input with finer resolution for the energy simulation of daylight-related buildings.展开更多
基金supported in part by the National Natural Science Foundation of China(Nos.61771368 and 61671347)Young Elite Scientists Sponsorship Program by CAST(2016QNRC001)
文摘Quality of experience(Qo E), which is very critical for the experience of users in wireless networks, has been extensively studied. However, due to different human perceptions, quantifying the effective capacity of wireless network subject to diverse Qo E is very difficult, which leads to many new challenges regarding Qo E guarantees in wireless networks. In this paper, we formulate the Qo E guarantees model for cellular wireless networks. Based on the model, we convert the effective capacity maximization problem into the equivalent convex optimization problem. Then, we develop the optimal Qo E-driven power allocation scheme, which can maximize the effective capacity. The obtained simulation results verified our proposed power allocation scheme, showing that the effective capacity can be significantly increased compared with that of traditional Qo E guarantees based schemes.
基金Supported by the National High Technology Research and Development Program of China(No.2008AA01A201)the National Nature Science Foundation of China(No.60503015,90818016)
文摘In view of the flaws of component-based software (CBS) reliability modeling and analysis, the low recognition degree of debugging process, too many assumptions and difficulties in obtaining the solution, a CBS reliability simulation process is presented incorporating the imperfect debugging and the limitation of debugging resources. Considering the effect of imperfect debugging on fault detec- tion and correction process, a CBS integration testing model is sketched by multi-queue muhichannel and finite server queuing model (MMFSQM). Compared with the analytical method based on pa- rameters and other nonparametric approaches, the simulation approach can relax more of the usual reliability modeling assumptions and effectively expound integration testing process of CBS. Then, CBS reliability process simulation procedure is developed accordingly. The proposed simulation ap- proach is validated to be sound and effective by simulation experiment studies and analysis.
文摘1. Background The virtual reality (VR) technology is now at the frontier of modern information science. VR is based on computer graphics, computer vision, and other fresh air topics in today's computer technology. Nowadays the VR technology has been applied successfully in variety of fields such as military simulation, industry, medical training and visualization, environment protection and entertainment.
基金supported in part by grants from Science and Technology Support Carbon Emission Peak and Carbon Neutralization Special Project of Shanghai 2021“Science and Technology Innovation Action Plan”[grant numbers 21DZ1208400].
文摘The complete description of outdoor luminous and thermal environment is the basis for daylight utilization design with simulation tools.Nevertheless,Typical Meteorological Year(TMY)and generation method specifically developed for the energy simulation of daylight-utilized buildings is still unavailable currently.Luminous environment parameters have not been taken into consideration in existing TMY generation methods.In this study,the feasibility of existing TMY generation process has been examined.A generic office model implementing sided window daylighting is established.Historical meteorological data of Hong Kong region from 1979 to 2007 have been collected and three existing weighting schemes are applied during the Typical Meteorological Month(TMM)selection procedures.Three TMY files for Hong Kong are generated and used to conduct integrated Climate-Based Daylight Modeling and building energy simulation.The result demonstrates that,on annual basis,the energy consumption results obtained from the generated TMY files are in good agreements with the long-term mean annual value.The maximum deviation of annual energy consumptions for the generated TMY files is only 1.8%.However,further analysis on monthly basis shows that all the three generated TMY files fail to fully represent the long-term monthly mean level.The maximum deviation of monthly energy consumptions for the generated TMY files can reach up to 11%.As the energy performance daylight utilization is subject to weather change,analysis on daily and monthly energy level is important,especially during design stage.The deficiency of existing TMM selection process and TMY generation method indicates the necessity to develop a corresponding typical weather data input with finer resolution for the energy simulation of daylight-related buildings.