针对极化敏感阵列参数估计过程中需要奇异值和特征值分解,以及低信噪比下估计误差偏大的问题,提出基于传播算子的二维旋转不变子空间(estimation of signal parameters via rotational invariance technique,ESPRIT)算法,改进算法引入...针对极化敏感阵列参数估计过程中需要奇异值和特征值分解,以及低信噪比下估计误差偏大的问题,提出基于传播算子的二维旋转不变子空间(estimation of signal parameters via rotational invariance technique,ESPRIT)算法,改进算法引入非圆信号共轭相关统计信息构造一组新的接收数据,将这组新数据与真实数据重构组合求得噪声子空间;采用ESPRIT算法将信号子空间分块得到旋转不变因子,无须特征值分解和谱峰搜索,实现信号空间到达角(direction of arrival,DOA)和极化角的精确估计.所提算法在参数估计性能上要优于经典算法,在低信噪比情况下均方误差较小,并且可降低计算量,最后由Matlab仿真验证所提算法的有效性.展开更多
基于最大非圆率非圆信号特点,提出一种实值张量旋转不变子空间(estimation signal parameters via rotational invariance techniques,ESPRIT)算法。首先,通过研究张量与矩阵之间的转化关系,将阵列接收数据矩阵推广到张量空间;然后,利...基于最大非圆率非圆信号特点,提出一种实值张量旋转不变子空间(estimation signal parameters via rotational invariance techniques,ESPRIT)算法。首先,通过研究张量与矩阵之间的转化关系,将阵列接收数据矩阵推广到张量空间;然后,利用欧拉公式将阵列接收数据张量转化成余弦与正弦数据张量,根据阵列维数将其分别在各维上加以拼接,并对拼接的实值数据张量做高阶奇异值分解,获取信号子空间;最后,通过构造选择矩阵和进行特征分解,来联合估计阵列各维相位差,实现波达方向估计。实验仿真结果表明,此算法具有良好的分辨力和测角精度。展开更多
现有的预防道路交通安全事故、治理道路交通噪声污染等问题的解决方案是从视觉维度监控重点区域并通过声音维度确定事件触发类型与位置。为了实现公路异常声源的实时监测,提出了一种基于双尺度旋转不变信号参数估计旋转不变子空间技术(E...现有的预防道路交通安全事故、治理道路交通噪声污染等问题的解决方案是从视觉维度监控重点区域并通过声音维度确定事件触发类型与位置。为了实现公路异常声源的实时监测,提出了一种基于双尺度旋转不变信号参数估计旋转不变子空间技术(Estimation of Signal Parameters via Rotational Invariance Techniques,ESPRIT)的低频宽带声源波达方向(Direction of Arrival,DOA)估计算法,该算法适用于三个矩形子阵呈三角形分布的分布式阵列。算法利用该分布式阵列具有的子阵内相邻阵元间距、相邻子阵间距两种尺度对应的空间平移不变性分别进行方向余弦估计,并利用基于阵型分布的解模糊策略实现高精度方位估计。仿真结果验证了算法的有效性,表明了基于该算法的分布式阵列DOA估计精度优于相同阵元数与阵元间距的单个均匀矩形阵,分析了估计精度与分布基线长度的关系,体现了算法的实际工程应用价值。展开更多
为了提高旋转不变子空间(estimation of signal parameters via rotational invariance techniques,ESPRIT)算法的分辨力和测角精度,充分利用非零延迟相关函数中信号入射角度的信息,提出了基于延时相关处理的ESPRIT算法。根据所有阵列...为了提高旋转不变子空间(estimation of signal parameters via rotational invariance techniques,ESPRIT)算法的分辨力和测角精度,充分利用非零延迟相关函数中信号入射角度的信息,提出了基于延时相关处理的ESPRIT算法。根据所有阵列间延时相关信息,构造新的阵列输出矩阵,并且得到新的协方差矩阵。对新的协方差矩阵进行特征值分解得到特征向量,通过将特征向量划分得到含有入射角度信息的子阵,最终求得信源的入射角度。仿真结果表明,该算法的分辨力和测角精度均优于原ESPRIT算法,并且在小角度间距情况下也有较好的分辨性能。展开更多
在基于旋转不变子空间的信号参数估计(estimating signal parameter via rotational invariance techniques,ESPRIT)算法中涉及到求解信号子空间矩阵的逆矩阵,针对常用方法计算复杂度高,实时性差等问题,提出使用广义逆公式对信号子空间...在基于旋转不变子空间的信号参数估计(estimating signal parameter via rotational invariance techniques,ESPRIT)算法中涉及到求解信号子空间矩阵的逆矩阵,针对常用方法计算复杂度高,实时性差等问题,提出使用广义逆公式对信号子空间矩阵进行求解的方法.在FPGA平台上设计并实现了由复数矩阵乘法、矩阵LU分解、下三角矩阵求逆等子模块构成的广义逆矩阵求解系统.利用该系统求解广义逆矩阵所用的时间约为2.18 ms,与在MATLAB上对同样矩阵进行广义逆求解的平均用时15.7 ms减少了7.2倍.使用该系统的结果在MATLAB上完成后续仿真,对ESPRIT算法最终所得角度进行误差分析,最终所得角度的平均估计误差约为0.04°.结果表明,该系统能在保证结果精确度的同时有效减少运算时间.展开更多
文摘针对极化敏感阵列参数估计过程中需要奇异值和特征值分解,以及低信噪比下估计误差偏大的问题,提出基于传播算子的二维旋转不变子空间(estimation of signal parameters via rotational invariance technique,ESPRIT)算法,改进算法引入非圆信号共轭相关统计信息构造一组新的接收数据,将这组新数据与真实数据重构组合求得噪声子空间;采用ESPRIT算法将信号子空间分块得到旋转不变因子,无须特征值分解和谱峰搜索,实现信号空间到达角(direction of arrival,DOA)和极化角的精确估计.所提算法在参数估计性能上要优于经典算法,在低信噪比情况下均方误差较小,并且可降低计算量,最后由Matlab仿真验证所提算法的有效性.
文摘基于最大非圆率非圆信号特点,提出一种实值张量旋转不变子空间(estimation signal parameters via rotational invariance techniques,ESPRIT)算法。首先,通过研究张量与矩阵之间的转化关系,将阵列接收数据矩阵推广到张量空间;然后,利用欧拉公式将阵列接收数据张量转化成余弦与正弦数据张量,根据阵列维数将其分别在各维上加以拼接,并对拼接的实值数据张量做高阶奇异值分解,获取信号子空间;最后,通过构造选择矩阵和进行特征分解,来联合估计阵列各维相位差,实现波达方向估计。实验仿真结果表明,此算法具有良好的分辨力和测角精度。
文摘现有的预防道路交通安全事故、治理道路交通噪声污染等问题的解决方案是从视觉维度监控重点区域并通过声音维度确定事件触发类型与位置。为了实现公路异常声源的实时监测,提出了一种基于双尺度旋转不变信号参数估计旋转不变子空间技术(Estimation of Signal Parameters via Rotational Invariance Techniques,ESPRIT)的低频宽带声源波达方向(Direction of Arrival,DOA)估计算法,该算法适用于三个矩形子阵呈三角形分布的分布式阵列。算法利用该分布式阵列具有的子阵内相邻阵元间距、相邻子阵间距两种尺度对应的空间平移不变性分别进行方向余弦估计,并利用基于阵型分布的解模糊策略实现高精度方位估计。仿真结果验证了算法的有效性,表明了基于该算法的分布式阵列DOA估计精度优于相同阵元数与阵元间距的单个均匀矩形阵,分析了估计精度与分布基线长度的关系,体现了算法的实际工程应用价值。
文摘为了提高旋转不变子空间(estimation of signal parameters via rotational invariance techniques,ESPRIT)算法的分辨力和测角精度,充分利用非零延迟相关函数中信号入射角度的信息,提出了基于延时相关处理的ESPRIT算法。根据所有阵列间延时相关信息,构造新的阵列输出矩阵,并且得到新的协方差矩阵。对新的协方差矩阵进行特征值分解得到特征向量,通过将特征向量划分得到含有入射角度信息的子阵,最终求得信源的入射角度。仿真结果表明,该算法的分辨力和测角精度均优于原ESPRIT算法,并且在小角度间距情况下也有较好的分辨性能。
文摘在基于旋转不变子空间的信号参数估计(estimating signal parameter via rotational invariance techniques,ESPRIT)算法中涉及到求解信号子空间矩阵的逆矩阵,针对常用方法计算复杂度高,实时性差等问题,提出使用广义逆公式对信号子空间矩阵进行求解的方法.在FPGA平台上设计并实现了由复数矩阵乘法、矩阵LU分解、下三角矩阵求逆等子模块构成的广义逆矩阵求解系统.利用该系统求解广义逆矩阵所用的时间约为2.18 ms,与在MATLAB上对同样矩阵进行广义逆求解的平均用时15.7 ms减少了7.2倍.使用该系统的结果在MATLAB上完成后续仿真,对ESPRIT算法最终所得角度进行误差分析,最终所得角度的平均估计误差约为0.04°.结果表明,该系统能在保证结果精确度的同时有效减少运算时间.