期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
时间特征与空间特征融合的轻量网络故障诊断方法
1
作者 王仲 姜娇 +2 位作者 张磊 谷泉 赵新光 《机电工程》 CAS 北大核心 2024年第9期1565-1574,共10页
为了解决多传感器数据间存在信息交叉、特征重复,导致模型训练精度低的问题,对滚动轴承在声辐射信号下的故障诊断进行了研究,提出了一种时间特征与空间特征融合的轻量网络故障诊断(SF-TFNet)方法。首先,利用卷积神经网络提取了原始轴承... 为了解决多传感器数据间存在信息交叉、特征重复,导致模型训练精度低的问题,对滚动轴承在声辐射信号下的故障诊断进行了研究,提出了一种时间特征与空间特征融合的轻量网络故障诊断(SF-TFNet)方法。首先,利用卷积神经网络提取了原始轴承声阵列信号的空间特征(SFs),使用长短时记忆网络(LSTM)提取了声阵列信号中的时域特征(TFs),并对提取的SFs和TFs进行了特征融合,生成了新的特征矩阵;然后,为了消除融合特征带来的重叠特征和信息冗余问题,引入了基于核的主成分分析(KPCA)方法对新生成的特征矩阵进行了非线性降维,去除了特征中的冗余成分,构建了滚动轴承新的时空特征数据集;最后,采用AdaBoost算法对新生成的数据集进行了故障分类,并得到了滚动轴承的最终故障诊断结果。研究结果表明:在半消声室滚动轴承故障实验台测试中,SF-TFNet方法的故障分类精度可以达到99.75%,其分类精度较高、聚类效果明显。在强背景噪声环境下与ResNet、ICNN和AlexNet三种方法进行比较,SF-TFNet方法不仅收敛速度快,而且故障识别精度高,诊断精度最高可达99.25%。为基于多通道的滚动轴承声辐射信号故障诊断提供了理论依据。 展开更多
关键词 滚动轴承 声辐射信号 多信息融合 特征轻量融合 故障诊断 长短时记忆网络 时域特征 基于核的主成分分析
下载PDF
建立储煤中心的KPCA-SVRM选址模型研究 被引量:2
2
作者 卢攀 刘泽剑 张鹏东 《电力科学与工程》 2009年第5期43-46,共4页
通过分析目前的电煤供应现状,提出建立储煤中心来解决电煤供应瓶颈问题。运用KPCA-SVRM(基于核函数的主成分分析与支持向量回归机结合)模型进行储煤中心选址决策,综合考虑各种因素,把社会专业化分工的优越性充分发挥出来,使之在实现电... 通过分析目前的电煤供应现状,提出建立储煤中心来解决电煤供应瓶颈问题。运用KPCA-SVRM(基于核函数的主成分分析与支持向量回归机结合)模型进行储煤中心选址决策,综合考虑各种因素,把社会专业化分工的优越性充分发挥出来,使之在实现电力行业可持续发展的同时尽量节约能源和成本、注重效益,保持电力行业的长期、健康、协调发展。在KPCA-SVRM模型中,首先是用KPCA对影响储煤中心选址决策的各种因素进行主成分提取,然后将提取后的主成分作为SVRM的输入,通过学习和训练最终输出决策结果,最后用相关实例来说明此过程。 展开更多
关键词 储煤中心 选址决策 基于核函数的主成分分析 支持向量回归机
下载PDF
一种基于KPCA的绕射信息分离方法 被引量:3
3
作者 尹健行 王真理 +3 位作者 张平野 梁瑶 舒国旭 吕尧 《地球物理学进展》 CSCD 北大核心 2017年第2期799-807,共9页
在油气勘探的过程中,需要对叠后地震数据中的绕射波信息进行提取,从而得到地下小尺度地质体的信息.本文在前人提出的使用主成分分析法(PCA)提取绕射波信息的基础上,进一步发展使用了基于核的主成分分析技术(KPCA)的提取绕射波信息方法,... 在油气勘探的过程中,需要对叠后地震数据中的绕射波信息进行提取,从而得到地下小尺度地质体的信息.本文在前人提出的使用主成分分析法(PCA)提取绕射波信息的基础上,进一步发展使用了基于核的主成分分析技术(KPCA)的提取绕射波信息方法,即通过构建数据模型,选取核函数进行KPCA运算,并利用不同的主分量进行信号重构,从而达到将绕射波和反射波分离的目的.相对于传统PCA,这种方法对于地震数据中弯曲的同相轴,以及倾斜的界面或者倾斜的同相轴有着更好的识别能力,在提取过程中能够提供更加精细的绕射波信息. 展开更多
关键词 绕射波提取 成分分析 基于核的主成分分析
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部