期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
CBS在《宠物影像诊断技术》翻转课堂教学中的应用
1
作者 陈一丹 任逸懿 +1 位作者 胡霖 郭娟 《养殖与饲料》 2023年第5期5-8,共4页
[目的]探讨CBS教学法在《宠物影像诊断技术》翻转课堂中的应用效果。[方法]随机选择2020级动物医学专业2个班的学生作为研究对象,其中1个班作为试验组,共49人,另一个班作为对照组,共50人,对照组授课方式以传统的理论讲授为主,试验组采用... [目的]探讨CBS教学法在《宠物影像诊断技术》翻转课堂中的应用效果。[方法]随机选择2020级动物医学专业2个班的学生作为研究对象,其中1个班作为试验组,共49人,另一个班作为对照组,共50人,对照组授课方式以传统的理论讲授为主,试验组采用CBS联合翻转课堂的教学方法进行授课,比较两组学生的学习效果。[结果]统计分析发现试验组的闭卷考试平均成绩显著高于对照组(P<0.05)。试验组学生调查问卷中教学质量满意度、CBS联合翻转课堂教学法的认可度、学习兴趣、课堂参与度、理论理解度、临床思维能力和职业素养提升度评分均高于对照组调查问卷的结果(P<0.05)。[结论]CBS运用于《宠物影像诊断技术》翻转课堂的教学效果较好,能促进学生更好的掌握影像技能,提高职业技能和素养,具有推广运用的意义。 展开更多
关键词 基于案例研究 宠物影像 翻转课堂 教学效果
下载PDF
Analogy-based software effort estimation using multi-objective feature selection
2
作者 Chen Xiang Lu Fengyan +2 位作者 Shen Yuxiang Xie Junfeng Wen Wanzhi 《Journal of Southeast University(English Edition)》 EI CAS 2018年第3期295-302,共8页
The feature selection in analogy-based software effort estimation (ASEE) is formulized as a multi-objective optimization problem. One objective is designed to maximize the effort estimation accuracy and the other ob... The feature selection in analogy-based software effort estimation (ASEE) is formulized as a multi-objective optimization problem. One objective is designed to maximize the effort estimation accuracy and the other objective is designed to minimize the number of selected features. Based on these two potential conflict objectives, a novel wrapper- based feature selection method, multi-objective feature selection for analogy-based software effort estimation (MASE), is proposed. In the empirical studies, 77 projects in Desharnais and 62 projects in Maxwell from the real world are selected as the evaluation objects and the proposed method MASE is compared with some baseline methods. Final results show that the proposed method can achieve better performance by selecting fewer features when considering MMRE (mean magnitude of relative error), MdMRE (median magnitude of relative error), PRED ( 0. 25 ), and SA ( standardized accuracy) performance metrics. 展开更多
关键词 software effort estimation multi-objectiveoptimization case-based reasoning feature selection empirical study
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部