期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于LightGBM的网络入侵检测系统
被引量:
11
1
作者
莫坤
王娜
+2 位作者
李恒吉
李朝阳
李剑
《信息安全研究》
2019年第2期152-156,共5页
入侵检测系统(intrusion detection system,IDS)是一种能够发现疑似入侵行为并采取相应措施的网络安全设备.现有IDS通常采用传统的常用机器学习算法和简单的深度学习算法,但始终难以避免训练速度慢、准确率不够高的缺点.针对这种情况,...
入侵检测系统(intrusion detection system,IDS)是一种能够发现疑似入侵行为并采取相应措施的网络安全设备.现有IDS通常采用传统的常用机器学习算法和简单的深度学习算法,但始终难以避免训练速度慢、准确率不够高的缺点.针对这种情况,提出了一种基于LightGBM算法的网络入侵检测系统,对疑似入侵行为样本进行准确分类,该方法可以对数据进行采样从而极大地减小了数据计算量.使用入侵检测系统的标准数据集KDD99数据集,准确率达到94. 7%,训练时间缩短至422s.实验结果表明:基于LightGBM算法的网络入侵检测系统相较于常用算法在取得更高准确率的同时训练模型的速度也提高10倍左右.
展开更多
关键词
入侵检测系统
多分类算法
基于梯度的单边采样
互斥特征捆绑
神经网络
下载PDF
职称材料
题名
基于LightGBM的网络入侵检测系统
被引量:
11
1
作者
莫坤
王娜
李恒吉
李朝阳
李剑
机构
北京邮电大学计算机学院
出处
《信息安全研究》
2019年第2期152-156,共5页
基金
国家自然科学基金项目(U1636106
61472048)
文摘
入侵检测系统(intrusion detection system,IDS)是一种能够发现疑似入侵行为并采取相应措施的网络安全设备.现有IDS通常采用传统的常用机器学习算法和简单的深度学习算法,但始终难以避免训练速度慢、准确率不够高的缺点.针对这种情况,提出了一种基于LightGBM算法的网络入侵检测系统,对疑似入侵行为样本进行准确分类,该方法可以对数据进行采样从而极大地减小了数据计算量.使用入侵检测系统的标准数据集KDD99数据集,准确率达到94. 7%,训练时间缩短至422s.实验结果表明:基于LightGBM算法的网络入侵检测系统相较于常用算法在取得更高准确率的同时训练模型的速度也提高10倍左右.
关键词
入侵检测系统
多分类算法
基于梯度的单边采样
互斥特征捆绑
神经网络
Keywords
intrusion detection system(IDS)
multi-classification algorithm
gradient-based oneside sampling
exclusive feature bundling
neural networks
分类号
TP301 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于LightGBM的网络入侵检测系统
莫坤
王娜
李恒吉
李朝阳
李剑
《信息安全研究》
2019
11
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部