期刊文献+
共找到92篇文章
< 1 2 5 >
每页显示 20 50 100
采用混合策略联合优化的模糊C-均值聚类信息熵点云简化算法 被引量:1
1
作者 黄鹤 黄佳慧 +2 位作者 刘国权 王会峰 高涛 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第7期214-226,共13页
针对传统聚类算法处理点云简化问题时精度低、耗时长且易丢失特征信息等问题,提出了一种基于动态精英自适应混合策略的鹈鹕算法(DEAMPOA)与加权熵法联合优化的模糊C-均值聚类(FCM)信息熵点云简化算法。采用动态自适应种群混合策略,同时... 针对传统聚类算法处理点云简化问题时精度低、耗时长且易丢失特征信息等问题,提出了一种基于动态精英自适应混合策略的鹈鹕算法(DEAMPOA)与加权熵法联合优化的模糊C-均值聚类(FCM)信息熵点云简化算法。采用动态自适应种群混合策略,同时融合了精英反向化思路,显著提升了鹈鹕优化算法(POA)的收敛趋势和全局寻优能力,提高了寻找FCM最优聚类中心的成功率;利用DEAMPOA结合加权熵法对FCM进行优化,提高鲁棒性的同时增强了搜索精度,得到较好的聚类结果;在8种UCI标准数据集上与4种算法对比进行聚类性能评估实验,验证了所提方法综合性能优越;将所提方法与信息熵融合,并应用在三维点云KITTI数据集简化中。实验结果表明:与包围框简化法、随机采样简化法和特征选择简化法对比,所提方法全局误差简化前后点集之间平均欧式距离(MED)指标分别降低了2.25%、6.93%、5.74%,点云简化效果最优且运行速度满足要求。 展开更多
关键词 C-均值 鹈鹕优化算法 简化 信息熵
下载PDF
基于改进聚类算法的目标点云分割
2
作者 张媛 施卫 《电脑知识与技术》 2024年第7期8-11,共4页
激光雷达作为自动驾驶不可或缺的传感器,非地面点云聚类作为环境感知障碍物的重要环节,对自动驾驶汽车的安全至关重要。针对现有聚类方法出现的聚类不足、过度聚类和实时性差的问题,本文提出了一种从粗到细的聚类策略来平衡聚类的精度... 激光雷达作为自动驾驶不可或缺的传感器,非地面点云聚类作为环境感知障碍物的重要环节,对自动驾驶汽车的安全至关重要。针对现有聚类方法出现的聚类不足、过度聚类和实时性差的问题,本文提出了一种从粗到细的聚类策略来平衡聚类的精度和速度。首先提出基于角度和距离判断的聚类方法对点云进行粗处理,然后采用基于断点检测的聚类方法对点云进行细化,实现了目标点云的精确分割。最后在公开的KITTI数据集上对本文提出的方法进行了评估,实验结果表明,其分割准确率达到82.2%,且分割时间较其他传统算法明显缩短,该算法具有良好的鲁棒性。 展开更多
关键词 激光雷达 分割 算法
下载PDF
自定义聚类中心点的快速K-means聚类点云精简算法
3
作者 王世刚 关红利 《工业控制计算机》 2024年第8期123-125,共3页
针对传统K-means算法在随机选取聚类中心点出现聚类失败及点云数据重建时在相对平坦的区域出现孔洞的问题,提出一种GK-means的改进聚类算法对点云数据进行精简。该算法首先规定数值K作为最终聚类个数的限定,然后对选点策略进行改进,采... 针对传统K-means算法在随机选取聚类中心点出现聚类失败及点云数据重建时在相对平坦的区域出现孔洞的问题,提出一种GK-means的改进聚类算法对点云数据进行精简。该算法首先规定数值K作为最终聚类个数的限定,然后对选点策略进行改进,采用最远点采样选取聚类中心,对簇进行细分,计算所有点到聚类中心的欧氏距离,获取最小值所在的位置,放进最小距离所在的簇。实验结果表明:改进后的K-means算法能够使算法成功的概率提高且运行速度较快,对点云进行精简时,特征区域完整地保留了点云模型的细节特征,重建结果具有较高的光顺性。 展开更多
关键词 中心 迭代 GK-means算法 精简
下载PDF
一种用于道路障碍物识别的激光点云聚类算法 被引量:9
4
作者 张名芳 刘新雨 +2 位作者 付锐 蒋拯民 李星星 《激光与红外》 CAS CSCD 北大核心 2017年第9期1186-1192,共7页
提出一种适用于道路障碍物识别检测的聚类算法,该算法用来处理各向异性分布的激光点云数据。算法的基本思想是:针对点云空间分布的实时变化,提出在线学习合并阈值的层次聚类算法,以确定聚类数搜索范围上界和初始聚类中心的待选点集;然... 提出一种适用于道路障碍物识别检测的聚类算法,该算法用来处理各向异性分布的激光点云数据。算法的基本思想是:针对点云空间分布的实时变化,提出在线学习合并阈值的层次聚类算法,以确定聚类数搜索范围上界和初始聚类中心的待选点集;然后提出距离乘积最大化方法,对待选点集进行初始化排序,既结合点云的空间密度分布改善了聚类结果,又克服了传统K-means算法初始聚类中心难确定的问题;最后选取Silhouette和距离评价函数为聚类有效性指标分析算法的聚类效果,确定最佳聚类数。用以上自适应、在线学习的算法对2.5D激光雷达采集的点云数据进行聚类,并与其他两种聚类算法进行实际试验比较发现,本算法可以正确分割大多数空间分布各异且相互连接的障碍物。 展开更多
关键词 K-MEANS算法 激光 层次 初始中心
下载PDF
一种三维点云聚类算法的研究 被引量:11
5
作者 雷敏 仲思东 屠礼芬 《科学技术与工程》 北大核心 2014年第29期50-53,共4页
在重构曲面之前,需要对点云数据进行聚类处理,以保证后续3D重建工作准确、高效地进行。基于采用传统的聚类方法处理立体视觉形成的海量数据所存在的计算与存储瓶颈问题,提出一种新型的聚类算法,即基于包围盒的密度聚类算法。它首先利用... 在重构曲面之前,需要对点云数据进行聚类处理,以保证后续3D重建工作准确、高效地进行。基于采用传统的聚类方法处理立体视觉形成的海量数据所存在的计算与存储瓶颈问题,提出一种新型的聚类算法,即基于包围盒的密度聚类算法。它首先利用包围盒算法对给定的海量点云进行过分聚类,然后对每个过分簇求中心,用中心点代替过分簇,最后在过分簇的级别上进行基于密度的聚类来完成对整体的聚类。结果显示该方法能够有效地实现海量点云的聚类,突破计算瓶颈。它实现了原始点云的大量删减,简化率高达96.75%,并最终在过分簇的级别上将原始点云分为5类。 展开更多
关键词 立体视觉 海量 包围盒 密度算法
下载PDF
欧氏聚类算法支持下的点云数据分割 被引量:39
6
作者 陈向阳 杨洋 向云飞 《测绘通报》 CSCD 北大核心 2017年第11期27-31,36,共6页
欧氏聚类算法是多元统计中的一种重要分类方法,可以将其应用于测绘领域中点云数据的分割。本文首先计算点云数据中两点之间的欧氏距离,将距离小于指定阈值作为分为一类的判定准则;然后迭代计算,直至所有的类间距大于指定阈值,完成欧氏... 欧氏聚类算法是多元统计中的一种重要分类方法,可以将其应用于测绘领域中点云数据的分割。本文首先计算点云数据中两点之间的欧氏距离,将距离小于指定阈值作为分为一类的判定准则;然后迭代计算,直至所有的类间距大于指定阈值,完成欧氏聚类分割。具体步骤为:(1)利用Octree法建立点云数据拓扑组织结构;(2)对每个点进行k近邻搜索,计算该点与k个邻近点之间的欧氏距离,最小归为一类;(3)设置一定的阈值,对步骤(2)迭代计算,直至所有类与类之间的距离大于指定阈值。试验证明,欧氏聚类算法对不同测量技术手段获取的点云数据均具有适用性,可以成功对点云数据进行分割,分割效果良好。 展开更多
关键词 欧氏 数据 分割 算法
下载PDF
基于边界保留的k-means聚类点云精简算法研究 被引量:4
7
作者 常俊飞 赵利民 王瀚斌 《测绘工程》 CSCD 2018年第7期60-65,共6页
传统的栅格法与曲率法对数据模型进行精简时很容易剔除特征点,具有较高的误判率,导致精简后的数据不能较好地突出点云数据的特征,使重构后的实体模型精度下降。文中提出基于边界保留的k-means聚类算法对点云进行精简。该算法首先使用k-... 传统的栅格法与曲率法对数据模型进行精简时很容易剔除特征点,具有较高的误判率,导致精简后的数据不能较好地突出点云数据的特征,使重构后的实体模型精度下降。文中提出基于边界保留的k-means聚类算法对点云进行精简。该算法首先使用k-d树进行质心初始化,然后使用X-Y边界提取算法来保留边界完整性,最后根据曲率高低对簇进行细分,使在高曲率区域保留必要多的点,在低曲率地方保留一些均匀分布的点。实验验证该方法优于传统的栅格法与曲率法。 展开更多
关键词 精简 栅格法 曲率法 K-MEANS算法
下载PDF
基于谱聚类算法的三维激光点云数据分类研究 被引量:1
8
作者 吴翔 王凤艳 +1 位作者 林楠 王明常 《世界地质》 CAS 2020年第2期479-486,共8页
基于Z+F IMAGER 5010C扫描仪采集实验区点云数据,经栅格处理后,结合纹理和形状等信息,采用谱聚类算法对其进行分类,利用混淆矩阵中的Kappa系数对分类结果进行精度评价。通过与传统的K-means算法和高斯混合模型的分类结果进行对比,结果表... 基于Z+F IMAGER 5010C扫描仪采集实验区点云数据,经栅格处理后,结合纹理和形状等信息,采用谱聚类算法对其进行分类,利用混淆矩阵中的Kappa系数对分类结果进行精度评价。通过与传统的K-means算法和高斯混合模型的分类结果进行对比,结果表明:谱聚类算法的分类效果明显,且分类精度较高,且加入纹理和形状信息的分类精度会高于仅含反射强度信息的分类精度,其总体分类精度达到81.36%,Kappa系数达到0.713 8。 展开更多
关键词 三维激光扫描 数据 算法 Kappa系数
下载PDF
应用改进狼群算法优化模糊聚类实现点云数据的区域分割 被引量:1
9
作者 张佳琦 王建民 《科学技术与工程》 北大核心 2023年第30期13002-13013,共12页
针对模糊C-均值聚类算法用于点云分割时对初始值敏感且易于陷入局部最优,导致点云分割效果不理想,不稳定的问题。提出了一种基于曲率约束的改进狼群算法优化模糊C-均值聚类的混合算法(IWPAFCM)。该算法首先在狼群算法中引入佳点集初始... 针对模糊C-均值聚类算法用于点云分割时对初始值敏感且易于陷入局部最优,导致点云分割效果不理想,不稳定的问题。提出了一种基于曲率约束的改进狼群算法优化模糊C-均值聚类的混合算法(IWPAFCM)。该算法首先在狼群算法中引入佳点集初始化种群分布;然后利用自适应步长简化参数设定、平衡寻优与收敛时间;进一步应用交互策略增强狼群的内部交流,提升狼群全局寻优的能力;最后对头狼加入高斯扰动机制使其具有跳出局部最优的能力,将改进狼群算法(improved wolf pack algorithm,IWPA)得到的聚类中心作为模糊聚类的初始值进行迭代,由此得到准确的聚类中心。在此基础上,基于点云的法矢量和曲率对点云之间的距离进行定义并替换传统欧式距离,实现了理想的点云分割效果。以ModelNet40公开数据集中Chair和Stool点云模型和实测点云机械零件和汽车覆盖件点云模型为例对算法可行性进行验证,并与FCM算法、FAFCM算法、WPAFCM算法和MACWPAFCM算法进行对比。结果表明,对于4种点云模型,本文算法相比4种对比算法在以数值高为优的V_(PC)聚类性能指标上平均提高0.4%~11.95%,在以数值低为优的适应度函数值J_(m)、V_(PE)和V_(XB)聚类指标上分别平均减少0.2%~11.97%、0.65%~7.35%、0.3%~19.47%,在两种ModelNet40点云模型上平均迭代次数减少8~21次,在两种实测点云模型上平均迭代次数减少39~57次,表明本文算法收敛速度快,迭代次数少,聚类效果佳,具有更高的聚类准确性和更好的综合性能。 展开更多
关键词 区域分割 狼群算法 模糊 数据
下载PDF
DBSCAN聚类和改进的双边滤波算法在点云去噪中的应用 被引量:20
10
作者 曲金博 王岩 赵琪 《测绘通报》 CSCD 北大核心 2019年第11期89-92,共4页
采用基于密度的DBSCAN聚类算法对点云数据进行去噪处理,然后通过改进的双边滤波方法进行光顺处理实现点云平滑效果,最终的结果不仅有效去除了噪声点,还保留了点云模型的特征。以沈阳民国时期代表性的建筑--沈阳金融博物馆为试验模型进... 采用基于密度的DBSCAN聚类算法对点云数据进行去噪处理,然后通过改进的双边滤波方法进行光顺处理实现点云平滑效果,最终的结果不仅有效去除了噪声点,还保留了点云模型的特征。以沈阳民国时期代表性的建筑--沈阳金融博物馆为试验模型进行试验,结果表明:通过DBSCAN聚类算法处理后得到的点云数据,再经改进的双边滤波处理所得到的数据远远比原点云数据直接运用改进的双边滤波处理得到的数据精度高,点云去噪效果更好。 展开更多
关键词 DBSCAN算法 双边滤波方法 噪声 密度
下载PDF
启发式k-means聚类算法的改进研究
11
作者 殷丽凤 栗庆杰 《大连交通大学学报》 CAS 2024年第2期115-119,共5页
启发式k-means聚类算法通过在k-means第一次迭代后查看附近的集群来预测每个数据点可能会被划分到的集群子集,有效地加快了算法的运行速度。但由于启发式算法存在随机选择初始聚类中心以及无法有效识别数据集中离群点的缺陷,导致聚类结... 启发式k-means聚类算法通过在k-means第一次迭代后查看附近的集群来预测每个数据点可能会被划分到的集群子集,有效地加快了算法的运行速度。但由于启发式算法存在随机选择初始聚类中心以及无法有效识别数据集中离群点的缺陷,导致聚类结果的误差平方和较大并且轮廓系数偏小。针对这一问题,提出了CHk-means算法,该算法引入仔细播种方法,克服了启发式k-means算法随机选择初始聚类中心带来的局部最优解问题;该算法引入局部异常因子LOF算法对离群点进行检测,降低了离群点数据对聚类结果的影响。在多个数据集上对3种算法进行对比试验,结果表明CHk-means算法可有效降低聚类结果的误差平方和,增强聚类的轮廓系数,使聚类质量得到明显改善。 展开更多
关键词 算法 K-MEANS 启发式算法 仔细播种 局部异常因子 离群
下载PDF
应用遗传模糊聚类实现点云数据区域分割 被引量:12
12
作者 李海伦 黎荣 +1 位作者 丁国富 葛源坤 《计算机应用研究》 CSCD 北大核心 2012年第5期1974-1976,共3页
为了准确地实现点云数据的区域分割,将基于遗传算法的模糊聚类算法应用于逆向工程中的点云数据区域分割中。首先估算出法矢量、高斯曲率和平均曲率,并与坐标一起组成八维特征向量,用加权距离代替欧氏距离,然后通过遗传算法获得全局最优... 为了准确地实现点云数据的区域分割,将基于遗传算法的模糊聚类算法应用于逆向工程中的点云数据区域分割中。首先估算出法矢量、高斯曲率和平均曲率,并与坐标一起组成八维特征向量,用加权距离代替欧氏距离,然后通过遗传算法获得全局最优解的近似解;最后将近似解作为模糊聚类的初始解进行迭代,实现点云数据的区域分割,从而避免传统FCM算法的局部性和对初始解的敏感性,减少了迭代次数。以汽车钣金件为例,证明了应用遗传模糊聚类实现点云数据区域分割的有效性,并验证了该方法能快速、准确地实现点云数据的区域分割。 展开更多
关键词 模糊 遗传算法 区域分割 数据 逆向工程
下载PDF
应用改进的粒子群优化模糊聚类实现点云数据的区域分割 被引量:23
13
作者 王晓辉 吴禄慎 +1 位作者 陈华伟 史皓良 《光学精密工程》 EI CAS CSCD 北大核心 2017年第4期1095-1105,共11页
为实现点云数据的区域划分,提出一种基于改进的粒子群优化与模糊C-均值聚类的混合算法(SPSO-FCM算法)。针对在点云聚类过程中易过早捕获局部极小值的问题,算法首先用改进的粒子群算法——社会粒子群优化算法,对种群进行初始化,通过为每... 为实现点云数据的区域划分,提出一种基于改进的粒子群优化与模糊C-均值聚类的混合算法(SPSO-FCM算法)。针对在点云聚类过程中易过早捕获局部极小值的问题,算法首先用改进的粒子群算法——社会粒子群优化算法,对种群进行初始化,通过为每一个粒子设置不同的跟随阈值,来维护种群中个体多样性,加深对种群全局搜索的程度,避免陷入局部极小值;随后,设置种群中每个粒子当前最优位置和初始种群的最优位置,更新自由粒子的位置和跟随粒子的速度和位置;最后,采用模糊C-均值聚类算法求解隶属度矩阵,确定适应值函数,更新所有粒子的最优位置,并判断粒子和种群的位置优越性,得到准确的聚类中心,实现对点云数据的区域划分。以曲面复杂度不一致的点云模型为例对算法进行验证,探讨SPSO-FCM聚类算法的可行性,并与FCM聚类算法、遗传FCM聚类算法进行比对。实验结果显示,SPSOFCM聚类算法较其它两种算法,收敛速度快,迭代次数少,聚类准确,边界区域分割清晰,特别是对型面复杂、点云数据较多的机械零部件点云数据进行分割时,能得到更好的分割结果。 展开更多
关键词 数据 区域分割 粒子群优化算法 模糊
下载PDF
基于TLS数据的站场线路点云提取算法 被引量:2
14
作者 方一鹏 宋占峰 李军 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第2期545-554,共10页
铁路站场线路几何信息对于铁路安全管理与维护具有重要意义。由于铁路站场内包含多条线路,且轨道错综复杂,使得从大场景点云中自动提取多股道钢轨点云成为难题。地面激光扫描TLS(Terrestrial Laser Scanning)作为非接触式测量手段,可快... 铁路站场线路几何信息对于铁路安全管理与维护具有重要意义。由于铁路站场内包含多条线路,且轨道错综复杂,使得从大场景点云中自动提取多股道钢轨点云成为难题。地面激光扫描TLS(Terrestrial Laser Scanning)作为非接触式测量手段,可快速获取铁路场景中的海量点云数据。针对TLS技术获取的铁路站场点云数据,提出一种基于Delaunay三角网聚类的多股道钢轨点云提取算法。基于分割-归并的思想,在获取铁路站场高精度点云后,沿站场线路方向将点云分为若干段,基于轨道平顺性特征,利用三角网聚类算法逐段提取钢轨顶面点云。在归并阶段整合站场中各股道轨面点云信息,将各段轨面点云连接起来,同时匹配左右轨面点云。将该方法在玉林站部分站场区域进行实例验证,提取到的轨道点云在对象层面上的总体精度为93.95%,完整度为90.57%,准确度为97.59%,相较于平面格网法,提取总体精度提升了5.65%,准确度提升了18.49%。在10处截面提取轨面宽度与轨距,统计结果表明轨面宽度中误差为5.2 mm,轨距中误差为5.3 mm,满足工程精度需要。实例结果表明,算法可准确有效提取站场多股道钢轨顶面点云,为铁路场景中其他结构物的TLS数据提取工作提供借鉴思路。 展开更多
关键词 地面激光扫描 主成分分析 DELAUNAY三角网 算法
下载PDF
提取城市道路边线的点云法向量聚类法 被引量:14
15
作者 杨望山 蔡来良 谷淑丹 《光子学报》 EI CAS CSCD 北大核心 2018年第6期180-190,共11页
考虑城市道路边缘的空间姿态特征,建立了一种自动提取道路边线点云并绘制道路边界线的方法.建立空间格网点云存储结构,利用网格内整体点云的法向量特征对其进行聚类和分割,利用改进K均值算法提取道路边线点云,采用中值法绘制道路边界线... 考虑城市道路边缘的空间姿态特征,建立了一种自动提取道路边线点云并绘制道路边界线的方法.建立空间格网点云存储结构,利用网格内整体点云的法向量特征对其进行聚类和分割,利用改进K均值算法提取道路边线点云,采用中值法绘制道路边界线.基于本文方法,分别选择实验区直线段和曲线段道路扫描数据进行分析.结果表明,本文方法不依靠任何辅助信息,便可以提取直线和曲线道路边线点云以及绘制道路边界线,在路面平坦的工况下有较好的提取效果. 展开更多
关键词 数据 空间格网 法向量 改进K-MEANS算法 自动提取道路边线 中值法
下载PDF
云计算环境下基于代表点增量层次密度聚类的微博事件检测及跟踪 被引量:3
16
作者 冯永 韩楠 贾东风 《计算机应用》 CSCD 北大核心 2013年第12期3559-3562,3595,共5页
为从微博服务平台产生的大量实时信息中抽取新闻事件,提出了一套完整的云计算环境下的微博事件检测跟踪算法。首先采用新的基于微博转发数和评论数的权值计算方法,将微博文本表示成向量空间模型;再利用基于代表点的增量层次密度聚类(RIH... 为从微博服务平台产生的大量实时信息中抽取新闻事件,提出了一套完整的云计算环境下的微博事件检测跟踪算法。首先采用新的基于微博转发数和评论数的权值计算方法,将微博文本表示成向量空间模型;再利用基于代表点的增量层次密度聚类(RIHDBSCAN)算法抽取关键词,最终实现新闻事件的检测和跟踪。针对单一节点无法快速高效地处理海量微博数据的问题,将算法部署在云计算平台Hadoop上。通过在新浪微博平台上获取的真实数据进行实验,结果表明,所提出的权值计算方法比TF-IDF和UF-ITUF有更高的性能,并且云框架的使用较好地提高了处理速度,适合用于海量数据的分析和挖掘。 展开更多
关键词 微博 事件检测 密度算法 计算 HADOOP平台 代表
下载PDF
基于K中心点的文档聚类算法 被引量:4
17
作者 吴景岚 朱文兴 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第5期88-91,共4页
K中心点算法是一个常用的聚类算法,它的主要缺陷是容易陷入局部极值,计算代价太高.本文先构造一个运用余弦相似度的K中心点文档聚类算法,然后提出一个改进算法,该算法不增加计算的复杂性,显著改进文档的聚类结果.最后,将该改进算法作为... K中心点算法是一个常用的聚类算法,它的主要缺陷是容易陷入局部极值,计算代价太高.本文先构造一个运用余弦相似度的K中心点文档聚类算法,然后提出一个改进算法,该算法不增加计算的复杂性,显著改进文档的聚类结果.最后,将该改进算法作为局部搜索过程嵌入到迭代局部搜索结构中,构造一个基于K中心点的迭代局部搜索文档聚类算法,进一步改进了文档聚类结果.试验结果表明该算法显著改进了文档聚类结果. 展开更多
关键词 K中心算法 文档 迭代局部搜索
下载PDF
一种融合多特征聚类集成的室内点云分割方法 被引量:9
18
作者 曾碧 黄文 《计算机工程》 CAS CSCD 北大核心 2018年第3期281-286,共6页
针对特定场景下传统点云分割算法不精确及特征描述不全面的问题,提出一种融合2D和3D多特征的近邻传播(AP)聚类集成分割方法。从点云中获得一组表征复杂室内场景不同点云类别的描述子,如彩色图像特征、曲率、法向量、旋转图像等,根据它... 针对特定场景下传统点云分割算法不精确及特征描述不全面的问题,提出一种融合2D和3D多特征的近邻传播(AP)聚类集成分割方法。从点云中获得一组表征复杂室内场景不同点云类别的描述子,如彩色图像特征、曲率、法向量、旋转图像等,根据它们之间的差异性,通过对每类特征进行AP聚类得到聚类成员,建立聚类成员簇间一致性矩阵,并利用Ncut算法进行图分割获得最终的点云分割结果。实验结果表明,该算法相较传统的点云分割算法能更准确地区分室内复杂三维点云场景,并且具有更好的稳定性。 展开更多
关键词 分割 特征融合 近邻传播算法 成员 集成
下载PDF
一种融合聚类的监督局部线性嵌入算法研究 被引量:2
19
作者 王东 张强 严亮 《半导体光电》 北大核心 2017年第3期419-424,共6页
监督局部线性嵌入算法(SLLE)通过数据点的标签信息进行高维数据在低维特征空间的映射,针对SLLE在均匀化高维数据的分布和最小化重构代价时,忽略类内偏离总体分布的稀疏离散数据在线性重构过程中可能错误地投影在其他超平面的情形,引入Km... 监督局部线性嵌入算法(SLLE)通过数据点的标签信息进行高维数据在低维特征空间的映射,针对SLLE在均匀化高维数据的分布和最小化重构代价时,忽略类内偏离总体分布的稀疏离散数据在线性重构过程中可能错误地投影在其他超平面的情形,引入Kmeans++算法调整样本间距离,进行最优近邻点的选择,从而更有效地反映数据在高维空间中的实际分布,使降维后的数据具备更好的可分性。通过ORL以及Yale人脸数据集上的仿真实验,结果显示,该方法具有更强的泛化能力及更高的识别率。 展开更多
关键词 降维 监督局部线性嵌入算法 最优近邻 人脸识别 算法
下载PDF
基于局部聚类的改进运动网格统计算法的研究 被引量:3
20
作者 邱云飞 王媛媛 《计算机应用研究》 CSCD 北大核心 2022年第2期618-622,共5页
针对常用的匹配点筛选算法效率低、对具有角度和尺度变化匹配图像稳定性差等问题,提出一种基于局部聚类的改进网格运动统计特征点筛选算法。首先,通过局部区域抑制算法筛选响应强度较高且成对出现特征点作为种子点,并以种子点为聚类中... 针对常用的匹配点筛选算法效率低、对具有角度和尺度变化匹配图像稳定性差等问题,提出一种基于局部聚类的改进网格运动统计特征点筛选算法。首先,通过局部区域抑制算法筛选响应强度较高且成对出现特征点作为种子点,并以种子点为聚类中心分割图像,得到最小外接矩形作为运动网格;随后把运动网格划分为3×3邻域支持估计量网格,计算运动网格在不同方向上的梯度最大值,作为运动网格的主方向;最后,把待匹配图像邻域支持估计量网格旋转至目标图像运动网格的主方向位置,借助网格运动统计算法筛选匹配。实验表明:对具有JPEG压缩变换、光照变化、模糊变换的匹配图像,所提算法匹配正确率在90%以上;对具有旋转和尺度变换图像,所提算法匹配正确率相较运动网格统计算法提高10%左右,高达40%以上;算法耗时仅为13 min,效率较高;所提算法可稳定高效地筛选正确的匹配点。 展开更多
关键词 运动网格统计算法 局部区域抑制算法 种子 局部 运动网格梯度主方向
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部