期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
一种基于AP-Entropy选择集成的风控模型和算法 被引量:1
1
作者 王茂光 杨行 《计算机科学》 CSCD 北大核心 2021年第S02期71-76,80,共7页
近年来互联网金融网贷领域涌现出了众多的风控问题,对此采用多种特征选择方法预处理风控领域的数据指标,构建了全面的针对企业信用的风控指标体系,采用stacking集成策略研究了基于AP-Entropy的信用风险模型。信用风险模型有两层学习器,... 近年来互联网金融网贷领域涌现出了众多的风控问题,对此采用多种特征选择方法预处理风控领域的数据指标,构建了全面的针对企业信用的风控指标体系,采用stacking集成策略研究了基于AP-Entropy的信用风险模型。信用风险模型有两层学习器,引入选择集成思想,从种类和数量上筛选基学习器。首先,在Logistic回归、反向传播神经网络、AdaBoost等经典机器学习算法中,采用AP聚类算法选出适合企业信用风险的异质学习器作为基学习器;其次,在每次学习器迭代中,利用熵对学习器择优,自动选出F1值最高的基学习器,其中改进基于熵的学习器选择算法,提升了基学习器选择过程的效率,降低了模型的计算成本,模型选取XGBoost作为次级基学习器。实验结果表明,文中提出的模型和其他模型相比具有更好的学习效果和更强的泛化能力。 展开更多
关键词 风控指标体系 stacking集成策略 AP-Entropy信用风险模型 选择集成 AP聚类算法 基于熵的学习器选择算法 XGBoost
下载PDF
一种基于置信度的代表点选择算法 被引量:1
2
作者 黄云 洪佳明 覃遵跃 《计算机工程》 CAS CSCD 2012年第19期167-169,174,共4页
代表点选择是实现缩减数据集规模的有效途径,可以提高分类的准确率和执行效率。为此,通过引入分类置信度熵的概念,提出适应度评价函数,用于评估代表点的选择效果,以此找到最优的代表点集。该方法可与其他代表点选择方法结合,得到性能更... 代表点选择是实现缩减数据集规模的有效途径,可以提高分类的准确率和执行效率。为此,通过引入分类置信度熵的概念,提出适应度评价函数,用于评估代表点的选择效果,以此找到最优的代表点集。该方法可与其他代表点选择方法结合,得到性能更优的代表点选择方法。与多个经典代表点选择方法进行实验比较,结果表明基于置信度的代表点选择方法在分类准确率和数据降低率上有一定优势。 展开更多
关键词 置信度 适应度评价函数 代表点选择 k最近邻 半监督学习 遗传算法
下载PDF
基于精细复合多尺度散布熵的高压断路器机械故障诊断方法 被引量:5
3
作者 陈佳豪 吴浩 +2 位作者 李栋 杨杰 刘益岑 《四川轻化工大学学报(自然科学版)》 CAS 2021年第4期40-47,共8页
针对高压断路器机械故障识别准确率不高的问题,提出了一种基于精细复合多尺度散布熵(RCMDE)的断路器故障诊断方法。利用实验室10 kV户内真空高压断路器进行合闸动作时正常、螺丝松动、传动机构卡涩、合闸弹簧储能不足4种状态的振动数据... 针对高压断路器机械故障识别准确率不高的问题,提出了一种基于精细复合多尺度散布熵(RCMDE)的断路器故障诊断方法。利用实验室10 kV户内真空高压断路器进行合闸动作时正常、螺丝松动、传动机构卡涩、合闸弹簧储能不足4种状态的振动数据采集。对采集到的数据计算RCMDE值,并构成特征向量集,将特征向量集分作训练集及测试集。利用粒子群算法(PSO)优化后的极限学习机(ELM)训练训练集得到智能故障识别模型,将测试集输入模型进行测试,实现断路器机械故障诊断。结果表明,基于RCMDE-PSO-ELM的高压断路器机械故障诊断方法能有效识别不同状态的机械故障,并且在噪声干扰以及数据丢失下仍能对故障进行准确识别,具有很好的抗干扰能力,在背景干扰较强的高压断路器故障检测环境下具备一定的实用性。 展开更多
关键词 高压断路 机械故障诊断 振动信号 精细复合多尺度散布 粒子群算法 极限学习
下载PDF
基于IMIE、MCFS和SSA-ELM的离心泵故障诊断方法
4
作者 辜文娟 张扬 《机电工程》 CAS 北大核心 2023年第9期1456-1463,共8页
采用多尺度排列熵对离心泵振动信号进行分析时,存在忽略信号幅值信息以及粗粒化处理存在不足的问题,从而导致离心泵的故障识别准确率不高,为此,提出了一种基于改进多尺度增长熵(IMIE)、多聚类特征选择(MCFS)和麻雀搜索算法优化极限学习... 采用多尺度排列熵对离心泵振动信号进行分析时,存在忽略信号幅值信息以及粗粒化处理存在不足的问题,从而导致离心泵的故障识别准确率不高,为此,提出了一种基于改进多尺度增长熵(IMIE)、多聚类特征选择(MCFS)和麻雀搜索算法优化极限学习机(SSA-ELM)的离心泵故障诊断方法。首先,基于改进粗粒化处理,提出了改进多尺度增长熵(IMIE)方法,将其用于提取故障特征,构造了反映离心泵损伤属性的特征矩阵;随后,采用多聚类特征选择(MCFS),对原始故障特征进行了重要性排序,获得了对分类识别贡献度更高的故障特征,提高了故障特征的质量;最后,将低维的敏感特征输入至基于麻雀搜索算法(SSA)的极限学习机(ELM)中,进行了离心泵故障分类,完成了离心泵不同故障类型的识别任务;并采用离心泵故障数据集,对基于IMIE、MCFS和SSA-ELM的故障诊断方法的有效性进行了实验验证。研究结果表明:所提故障诊断方法的故障识别准确率达到了100%,多次实验的平均准确率和标准差也优于其他对比的故障诊断方法,即IMIE能够准确地提取信号中的故障信息,进而表征离心泵的健康状态;SSA-ELM能够准确地识别离心泵的故障类型,证明该方法具有一定的有效性和优越性。 展开更多
关键词 叶片式泵 改进粗粒化处理 改进多尺度增长 多聚类特征选择 麻雀搜索算法 极限学习 特征矩阵
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部