Feature-based image matching algorithms play an indispensable role in automatic target recognition (ATR). In this work, a fast image matching algorithm (FIMA) is proposed which utilizes the geometry feature of ext...Feature-based image matching algorithms play an indispensable role in automatic target recognition (ATR). In this work, a fast image matching algorithm (FIMA) is proposed which utilizes the geometry feature of extended centroid (EC) to build affine invariants. Based on at-fine invariants of the length ratio of two parallel line segments, FIMA overcomes the invalidation problem of the state-of-the-art algorithms based on affine geometry features, and increases the feature diversity of different targets, thus reducing misjudgment rate during recognizing targets. However, it is found that FIMA suffers from the parallelogram contour problem and the coincidence invalidation. An advanced FIMA is designed to cope with these problems. Experiments prove that the proposed algorithms have better robustness for Gaussian noise, gray-scale change, contrast change, illumination and small three-dimensional rotation. Compared with the latest fast image matching algorithms based on geometry features, FIMA reaches the speedup of approximate 1.75 times. Thus, FIMA would be more suitable for actual ATR applications.展开更多
Pushover analysis is common because of its conceptual simplicity and computational attractiveness in computing seismic demand.Considering that traditional pushover analysis is restricted in underground structures due ...Pushover analysis is common because of its conceptual simplicity and computational attractiveness in computing seismic demand.Considering that traditional pushover analysis is restricted in underground structures due to the stark differences in the seismic response characteristics of surface structures,this paper proposes a pushover analysis method for underground structures and its application in seismic damage assessment.First,three types of force distribution are presented based on ground response analysis.Next,the target displacements and analysis models are established according to force-based and performance-based design.Then,the pushover analysis procedure for underground structures is described.Next,the applicability of pushover analysis to underground structures is verified by comparing the responses of a Chongwenmen subway station determined by the proposed procedure and by nonlinear response history analysis.In addition,two other points are made:that the inverted triangular distribution of effective earthquake acceleration is more practical than the other two distributions,and that performance-based design is more effective than force-based design.Finally,a cyclic reversal loading pattern based on one cycle of reversal loads as an earthquake event is presented and applied to the seismic damage assessment of underground structures.The results show that the proposed pushover analysis can be effectively applied to the seismic design and damage assessment of underground structures.展开更多
基金Projects(2012AA010901,2012AA01A301)supported by National High Technology Research and Development Program of ChinaProjects(61272142,61103082,61003075,61170261,61103193)supported by the National Natural Science Foundation of ChinaProjects(B120601,CX2012A002)supported by Fund Sponsor Project of Excellent Postgraduate Student of NUDT,China
文摘Feature-based image matching algorithms play an indispensable role in automatic target recognition (ATR). In this work, a fast image matching algorithm (FIMA) is proposed which utilizes the geometry feature of extended centroid (EC) to build affine invariants. Based on at-fine invariants of the length ratio of two parallel line segments, FIMA overcomes the invalidation problem of the state-of-the-art algorithms based on affine geometry features, and increases the feature diversity of different targets, thus reducing misjudgment rate during recognizing targets. However, it is found that FIMA suffers from the parallelogram contour problem and the coincidence invalidation. An advanced FIMA is designed to cope with these problems. Experiments prove that the proposed algorithms have better robustness for Gaussian noise, gray-scale change, contrast change, illumination and small three-dimensional rotation. Compared with the latest fast image matching algorithms based on geometry features, FIMA reaches the speedup of approximate 1.75 times. Thus, FIMA would be more suitable for actual ATR applications.
基金supported by the Tsinghua Initiative Scientific Research Program(Grant No.2012THZ02-2)Beijing Natural Science Foundation(Grant No.8111001)+1 种基金National Basic Research Program of China(Grant No.2011CB013602)Major Research Plan of the National Natural Science Foundation of China(Grant No.91215301)
文摘Pushover analysis is common because of its conceptual simplicity and computational attractiveness in computing seismic demand.Considering that traditional pushover analysis is restricted in underground structures due to the stark differences in the seismic response characteristics of surface structures,this paper proposes a pushover analysis method for underground structures and its application in seismic damage assessment.First,three types of force distribution are presented based on ground response analysis.Next,the target displacements and analysis models are established according to force-based and performance-based design.Then,the pushover analysis procedure for underground structures is described.Next,the applicability of pushover analysis to underground structures is verified by comparing the responses of a Chongwenmen subway station determined by the proposed procedure and by nonlinear response history analysis.In addition,two other points are made:that the inverted triangular distribution of effective earthquake acceleration is more practical than the other two distributions,and that performance-based design is more effective than force-based design.Finally,a cyclic reversal loading pattern based on one cycle of reversal loads as an earthquake event is presented and applied to the seismic damage assessment of underground structures.The results show that the proposed pushover analysis can be effectively applied to the seismic design and damage assessment of underground structures.