针对VoLTE(Voice over LTE)网络复杂性导致的VoLTE业务分析难点和痛点,提出基于AIOps(基于算法的IT运维)的VoLTE质量管理解决方案。将VoLTE业务流程分解为四大应用场景,然后针对每个场景提出相应的质量监控规则和问题定界算法,建立和实...针对VoLTE(Voice over LTE)网络复杂性导致的VoLTE业务分析难点和痛点,提出基于AIOps(基于算法的IT运维)的VoLTE质量管理解决方案。将VoLTE业务流程分解为四大应用场景,然后针对每个场景提出相应的质量监控规则和问题定界算法,建立和实现VoLTE业务质量自动化监控和分析体系,极大地提升运维效率和降低VoLTE质量分析对分析人员的技术能力要求。展开更多
According to the current research status of component retrieval, the component description model based on facet classification is improved by adding semantic features. Furthermore, the component retrieval process mode...According to the current research status of component retrieval, the component description model based on facet classification is improved by adding semantic features. Furthermore, the component retrieval process model is put forward by combining the domain ontology with the relative concept match algorithm. A detailed illustration of a component reasoning engine and a component classification engine is given and the component classification algorithm is provided by using the Naive Bayes algorithm based on domain ontology. The experimental results show that the recall ratio and the precision ratio are obviously improved by using the method based on semantics, and demonstrate the feasibility and effectiveness of the proposed method.展开更多
Network virtualization(NV) is widely considered as a key component of the future network and promises to allow multiple virtual networks(VNs) with different protocols to coexist on a shared substrate network(SN). One ...Network virtualization(NV) is widely considered as a key component of the future network and promises to allow multiple virtual networks(VNs) with different protocols to coexist on a shared substrate network(SN). One main challenge in NV is virtual network embedding(VNE). VNE is a NPhard problem. Previous VNE algorithms in the literature are mostly heuristic, while the remaining algorithms are exact. Heuristic algorithms aim to find a feasible embedding of each VN, not optimal or sub-optimal, in polynomial time. Though presenting the optimal or sub-optimal embedding per VN, exact algorithms are too time-consuming in smallscaled networks, not to mention moderately sized networks. To make a trade-off between the heuristic and the exact, this paper presents an effective algorithm, labeled as VNE-RSOT(Restrictive Selection and Optimization Theory), to solve the VNE problem. The VNERSOT can embed virtual nodes and links per VN simultaneously. The restrictive selection contributes to selecting candidate substrate nodes and paths and largely cuts down on the number of integer variables, used in the following optimization theory approach. The VNE-RSOT fights to minimize substrate resource consumption and accommodates more VNs. To highlight the efficiency of VNERSOT, a simulation against typical and stateof-art heuristic algorithms and a pure exact algorithm is made. Numerical results reveal that virtual network request(VNR) acceptance ratio of VNE-RSOT is, at least, 10% higher than the best-behaved heuristic. Other metrics, such as the execution time, are also plotted to emphasize and highlight the efficiency of VNE-RSOT.展开更多
A decentralized task planning algorithm is proposed for heterogeneous unmanned aerial vehicle(UAV)swarm with different capabilities.The algorithm extends the consensus-based bundle algorithm(CBBA)to account for a more...A decentralized task planning algorithm is proposed for heterogeneous unmanned aerial vehicle(UAV)swarm with different capabilities.The algorithm extends the consensus-based bundle algorithm(CBBA)to account for a more realistic and complex environment.The extension of the algorithm includes handling multi-agent task that requires multiple UAVs collaboratively completed in coordination,and consideration of avoiding obstacles in task scenarios.We propose a new consensus algorithm to solve the multi-agent task allocation problem and use the Dubins algorithm to design feasible paths for UAVs to avoid obstacles and consider motion constraints.Experimental results show that the CBBA extension algorithm can converge to a conflict-free and feasible solution for multi-agent task planning problems.展开更多
The direct torque control of the dual star induction motor(DTC-DSIM) using conventional PI controllers is characterized by unsatisfactory performance, such as high ripples of torque and flux, and sensitivity to parame...The direct torque control of the dual star induction motor(DTC-DSIM) using conventional PI controllers is characterized by unsatisfactory performance, such as high ripples of torque and flux, and sensitivity to parametric variations. Among the most evoked control strategies adopted in this field to overcome these drawbacks presented in classical drive, it is worth mentioning the use of the second order sliding mode control(SOSMC) based on the super twisting algorithm(STA) combined with the fuzzy logic control(FSOSMC). In order to realize the optimal control performance, the FSOSMC parameters are adjusted using an optimization algorithm based on the genetic algorithm(GA). The performances of the envisaged control scheme, called G-FSOSMC, are investigated against G-SOSMC, G-PI and BBO-FSOSMC algorithms. The proposed controller scheme is efficient in reducing the torque and flux ripples, and successfully suppresses chattering. The effects of parametric uncertainties do not affect system performance.展开更多
In order to diagnose the common faults of railway switch control circuit,a fault diagnosis method based on density-based spatial clustering of applications with noise(DBSCAN)and self-organizing feature map(SOM)is prop...In order to diagnose the common faults of railway switch control circuit,a fault diagnosis method based on density-based spatial clustering of applications with noise(DBSCAN)and self-organizing feature map(SOM)is proposed.Firstly,the three-phase current curve of the switch machine recorded by the micro-computer monitoring system is dealt with segmentally and then the feature parameters of the three-phase current are calculated according to the action principle of the switch machine.Due to the high dimension of initial features,the DBSCAN algorithm is used to separate the sensitive features of fault diagnosis and construct the diagnostic sensitive feature set.Then,the particle swarm optimization(PSO)algorithm is used to adjust the weight of SOM network to modify the rules to avoid“dead neurons”.Finally,the PSO-SOM network fault classifier is designed to complete the classification and diagnosis of the samples to be tested.The experimental results show that this method can judge the fault mode of switch control circuit with less training samples,and the accuracy of fault diagnosis is higher than that of traditional SOM network.展开更多
To reduce the cost, size and complexity, a consumer digital camera usually uses a single sensor overlaid with a color filter array(CFA) to sample one of the red-green-blue primary color values, and uses demosaicking a...To reduce the cost, size and complexity, a consumer digital camera usually uses a single sensor overlaid with a color filter array(CFA) to sample one of the red-green-blue primary color values, and uses demosaicking algorithm to estimate the missing color values at each pixel. A novel image correlation and support vector machine(SVM) based edge-adaptive algorithm was proposed, which can reduce edge artifacts and false color artifacts, effectively. Firstly, image pixels were separated into edge region and smooth region with an edge detection algorithm. Then, a hybrid approach switching between a simple demosaicking algorithm on the smooth region and SVM based demosaicking algorithm on the edge region was performed. Image spatial and spectral correlations were employed to create middle planes for the interpolation. Experimental result shows that the proposed approach produced visually pleasing full-color result images and obtained higher CPSNR and smaller S-CIELAB*ab?E than other conventional demosaicking algorithms.展开更多
Watermarking system based on quantization index modulation (QIM) is increasingly popular in high payload applications,but it is inherently fragile against amplitude scaling attacks.In order to resist desynchronizati...Watermarking system based on quantization index modulation (QIM) is increasingly popular in high payload applications,but it is inherently fragile against amplitude scaling attacks.In order to resist desynchronization attacks of QIM digital watermarking,a low density parity check (LDPC) code-aided QIM watermarking algorithm is proposed,and the performance of QIM watermarking system can be improved by incorporating LDPC code with message passing estimation/detection framework.Using the theory of iterative estimation and decoding,the watermark signal is decoded by the proposed algorithm through iterative estimation of amplitude scaling parameters and decoding of watermark.The performance of the proposed algorithm is closer to the dirty paper Shannon limit than that of repetition code aided algorithm when the algorithm is attacked by the additive white Gaussian noise.For constant amplitude scaling attacks,the proposed algorithm can obtain the accurate estimation of amplitude scaling parameters.The simulation result shows that the algorithm can obtain similar performance compared to the algorithm without desynchronization.展开更多
The computation burden in the model-based predictive control algorithm is heavy when solving QR optimization with a limited sampling step, especially for a complicated system with large dimension. A fast algorithm is ...The computation burden in the model-based predictive control algorithm is heavy when solving QR optimization with a limited sampling step, especially for a complicated system with large dimension. A fast algorithm is proposed in this paper to solve this problem, in which real-time values are modulated to bit streams to simplify the multiplication. In addition, manipulated variables in the prediction horizon are deduced to the current control horizon approximately by a recursive relation to decrease the dimension of QR optimization. The simulation results demonstrate the feasibility of this fast algorithm for MIMO systems.展开更多
Intrusion detection aims to detect intrusion behavior and serves as a complement to firewalls.It can detect attack types of malicious network communications and computer usage that cannot be detected by idiomatic fire...Intrusion detection aims to detect intrusion behavior and serves as a complement to firewalls.It can detect attack types of malicious network communications and computer usage that cannot be detected by idiomatic firewalls.Many intrusion detection methods are processed through machine learning.Previous literature has shown that the performance of an intrusion detection method based on hybrid learning or integration approach is superior to that of single learning technology.However,almost no studies focus on how additional representative and concise features can be extracted to process effective intrusion detection among massive and complicated data.In this paper,a new hybrid learning method is proposed on the basis of features such as density,cluster centers,and nearest neighbors(DCNN).In this algorithm,data is represented by the local density of each sample point and the sum of distances from each sample point to cluster centers and to its nearest neighbor.k-NN classifier is adopted to classify the new feature vectors.Our experiment shows that DCNN,which combines K-means,clustering-based density,and k-NN classifier,is effective in intrusion detection.展开更多
A weighted selection combining (WSC) scheme is proposed to improve prediction accuracy for cooperative spectrum prediction in cognitive radio networks by exploiting spatial diversity. First, a genetic algorithm-base...A weighted selection combining (WSC) scheme is proposed to improve prediction accuracy for cooperative spectrum prediction in cognitive radio networks by exploiting spatial diversity. First, a genetic algorithm-based neural network (GANN) is designed to perform spectrum prediction in consideration of both the characteristics of the primary users (PU) and the effect of fading. Then, a fusion selection method based on the iterative self-organizing data analysis (ISODATA) algorithm is designed to select the best local predictors for combination. Additionally, a reliability-based weighted combination rule is proposed to make an accurate decision based on local prediction results considering the diversity of the predictors. Finally, a Gaussian approximation approach is employed to study the performance of the proposed WSC scheme, and the expressions of the global prediction precision and throughput enhancement are derived. Simulation results reveal that the proposed WSC scheme outperforms the other cooperative spectrum prediction schemes in terms of prediction accuracy, and can achieve significant throughput gain for cognitive radio networks.展开更多
The operation variables,including feed rate of ore slurry,caustic solution and live steams in the double-stream alumina digestion process,determine the product quality,process costs and the environment pollution.Previ...The operation variables,including feed rate of ore slurry,caustic solution and live steams in the double-stream alumina digestion process,determine the product quality,process costs and the environment pollution.Previously,they were set by the technical workers according to the offline analysis results and an empirical formula,which leads to unstable process indices and high consumption frequently.So,a multi-objective optimization model is built to maintain the balance between resource consumptions and process indices by taking technical indices and energy efficiency as objectives,where the key technical indices are predicted based on the digestion kinetics of diaspore.A multi-objective state transition algorithm(MOSTA)is improved to solve the problem,in which a self-adaptive strategy is applied to dynamically adjust the operator factors of the MOSTA and dynamic infeasible threshold is used to handle constraints to enhance searching efficiency and ability of the algorithm.Then a rule based strategy is designed to make the final decision from the Pareto frontiers.The method is integrated into an optimal control system for the industrial digestion process and tested in the actual production.Results show that the proposed method can achieve the technical target while reducing the energy consumption.展开更多
To solve the hardware deployment problem caused by the vast demanding computational complexity of convolutional layers and limited hardware resources for the hardware network inference,a look-up table(LUT)-based convo...To solve the hardware deployment problem caused by the vast demanding computational complexity of convolutional layers and limited hardware resources for the hardware network inference,a look-up table(LUT)-based convolution architecture built on a field-programmable gate array using integer multipliers and addition trees is used.With the help of the Winograd algorithm,the optimization of convolution and multiplication is realized to reduce the computational complexity.The LUT-based operator is further optimized to construct a processing unit(PE).Simultaneously optimized storage streams improve memory access efficiency and solve bandwidth constraints.The data toggle rate is reduced to optimize power consumption.The experimental results show that the use of the Winograd algorithm to build basic processing units can significantly reduce the number of multipliers and achieve hardware deployment acceleration,while the time-division multiplexing of processing units improves resource utilization.Under this experimental condition,compared with the traditional convolution method,the architecture optimizes computing resources by 2.25 times and improves the peak throughput by 19.3 times.The LUT-based Winograd accelerator can effectively solve the deployment problem caused by limited hardware resources.展开更多
IR (Image Registration) is one of the important operation of image processing system which is the process of aligning two or more images into one coordinate system that are taken at different times, from different s...IR (Image Registration) is one of the important operation of image processing system which is the process of aligning two or more images into one coordinate system that are taken at different times, from different sensors, or from different viewpoints. It has a lot of applications especially medical imaging and remote sensing. The main purpose of this paper is to provide a comprehensive review of existing literatures available on image registration system and proposed a new feature-based IR technique using edge of images. We used edges as a feature of images for registration. It will be a useful document for researchers who will work on feature-based image registration regardless for specific applications.展开更多
Aiming at the faults of some weak nodes in the concentrated solar power-photovoltaic(CSP-PV)hybrid power generation system,it is impossible to restore the transient voltage only relying on the reactive power regulatio...Aiming at the faults of some weak nodes in the concentrated solar power-photovoltaic(CSP-PV)hybrid power generation system,it is impossible to restore the transient voltage only relying on the reactive power regulation capability of the system itself.We propose a dynamic reactive power planning method suitable for CSP-PV hybrid power generation system.The method determines the installation node of the dynamic reactive power compensation device and its compensation capacity based on the reactive power adjustment capability of the system itself.The critical fault node is determined by the transient voltage stability recovery index,and the weak node of the system is initially determined.Based on this,the sensitivity index is used to determine the installation node of the dynamic reactive power compensation device.Dynamic reactive power planning optimization model is established with the lowest investment cost of dynamic reactive power compensation device and the improvement of system transient voltage stability.Furthermore,the component of the reactive power compensation node is optimized by particle swarm optimization based on differential evolution(DE-PSO).The simulation results of the example system show that compared with the dynamic position compensation device installation location optimization method,the proposed method can improve the transient voltage stability of the system under the same reactive power compensation cost.展开更多
For certain applications, the paper proposes a LOD generation algorithm based on model feature, to measure the value of certain features as weight, and to just the geometrical characteristics and retains the full feat...For certain applications, the paper proposes a LOD generation algorithm based on model feature, to measure the value of certain features as weight, and to just the geometrical characteristics and retains the full feature in the simplified model. Algorithm is simple and intuitive, LOD models can be generated by a continuous smooth transition and meet the requirements of real-time display. Experimental results show the effectiveness of the algorithm. Algorithm is simple and quick, broad applicability, the improve simplified algorithm is very suitable for modulation texture operator, generating algorithm based on a lookup table to meet the model requirements for real-time display.展开更多
文摘针对VoLTE(Voice over LTE)网络复杂性导致的VoLTE业务分析难点和痛点,提出基于AIOps(基于算法的IT运维)的VoLTE质量管理解决方案。将VoLTE业务流程分解为四大应用场景,然后针对每个场景提出相应的质量监控规则和问题定界算法,建立和实现VoLTE业务质量自动化监控和分析体系,极大地提升运维效率和降低VoLTE质量分析对分析人员的技术能力要求。
基金The National Natural Science Foundation of China(No60072006)
文摘According to the current research status of component retrieval, the component description model based on facet classification is improved by adding semantic features. Furthermore, the component retrieval process model is put forward by combining the domain ontology with the relative concept match algorithm. A detailed illustration of a component reasoning engine and a component classification engine is given and the component classification algorithm is provided by using the Naive Bayes algorithm based on domain ontology. The experimental results show that the recall ratio and the precision ratio are obviously improved by using the method based on semantics, and demonstrate the feasibility and effectiveness of the proposed method.
基金supported by the National Basic Research Program of China (973 Program) under Grant 2013CB329104the National Natural Science Foundation of China under Grant 61372124 and 61427801the Key Projects of Natural Science Foundation of Jiangsu University under Grant 11KJA510001
文摘Network virtualization(NV) is widely considered as a key component of the future network and promises to allow multiple virtual networks(VNs) with different protocols to coexist on a shared substrate network(SN). One main challenge in NV is virtual network embedding(VNE). VNE is a NPhard problem. Previous VNE algorithms in the literature are mostly heuristic, while the remaining algorithms are exact. Heuristic algorithms aim to find a feasible embedding of each VN, not optimal or sub-optimal, in polynomial time. Though presenting the optimal or sub-optimal embedding per VN, exact algorithms are too time-consuming in smallscaled networks, not to mention moderately sized networks. To make a trade-off between the heuristic and the exact, this paper presents an effective algorithm, labeled as VNE-RSOT(Restrictive Selection and Optimization Theory), to solve the VNE problem. The VNERSOT can embed virtual nodes and links per VN simultaneously. The restrictive selection contributes to selecting candidate substrate nodes and paths and largely cuts down on the number of integer variables, used in the following optimization theory approach. The VNE-RSOT fights to minimize substrate resource consumption and accommodates more VNs. To highlight the efficiency of VNERSOT, a simulation against typical and stateof-art heuristic algorithms and a pure exact algorithm is made. Numerical results reveal that virtual network request(VNR) acceptance ratio of VNE-RSOT is, at least, 10% higher than the best-behaved heuristic. Other metrics, such as the execution time, are also plotted to emphasize and highlight the efficiency of VNE-RSOT.
文摘A decentralized task planning algorithm is proposed for heterogeneous unmanned aerial vehicle(UAV)swarm with different capabilities.The algorithm extends the consensus-based bundle algorithm(CBBA)to account for a more realistic and complex environment.The extension of the algorithm includes handling multi-agent task that requires multiple UAVs collaboratively completed in coordination,and consideration of avoiding obstacles in task scenarios.We propose a new consensus algorithm to solve the multi-agent task allocation problem and use the Dubins algorithm to design feasible paths for UAVs to avoid obstacles and consider motion constraints.Experimental results show that the CBBA extension algorithm can converge to a conflict-free and feasible solution for multi-agent task planning problems.
基金Project supported by the LEB Research LaboratoryDepartment of Electrical Engineering,University of Batna 2, Algeria。
文摘The direct torque control of the dual star induction motor(DTC-DSIM) using conventional PI controllers is characterized by unsatisfactory performance, such as high ripples of torque and flux, and sensitivity to parametric variations. Among the most evoked control strategies adopted in this field to overcome these drawbacks presented in classical drive, it is worth mentioning the use of the second order sliding mode control(SOSMC) based on the super twisting algorithm(STA) combined with the fuzzy logic control(FSOSMC). In order to realize the optimal control performance, the FSOSMC parameters are adjusted using an optimization algorithm based on the genetic algorithm(GA). The performances of the envisaged control scheme, called G-FSOSMC, are investigated against G-SOSMC, G-PI and BBO-FSOSMC algorithms. The proposed controller scheme is efficient in reducing the torque and flux ripples, and successfully suppresses chattering. The effects of parametric uncertainties do not affect system performance.
基金High Education Research Project Funding(No.2018C-11)Natural Science Fund of Gansu Province(Nos.18JR3RA107,1610RJYA034)Key Research and Development Program of Gansu Province(No.17YF1WA 158)。
文摘In order to diagnose the common faults of railway switch control circuit,a fault diagnosis method based on density-based spatial clustering of applications with noise(DBSCAN)and self-organizing feature map(SOM)is proposed.Firstly,the three-phase current curve of the switch machine recorded by the micro-computer monitoring system is dealt with segmentally and then the feature parameters of the three-phase current are calculated according to the action principle of the switch machine.Due to the high dimension of initial features,the DBSCAN algorithm is used to separate the sensitive features of fault diagnosis and construct the diagnostic sensitive feature set.Then,the particle swarm optimization(PSO)algorithm is used to adjust the weight of SOM network to modify the rules to avoid“dead neurons”.Finally,the PSO-SOM network fault classifier is designed to complete the classification and diagnosis of the samples to be tested.The experimental results show that this method can judge the fault mode of switch control circuit with less training samples,and the accuracy of fault diagnosis is higher than that of traditional SOM network.
基金Projects(51174258,11105002)supported by the National Natural Science Foundation of ChinaProject(KJ2013B087)supported by Anhui Provincial Natural Science Research Projects in Central Universities,China+1 种基金Projects(2011B31,2013A4017)support by the Guidance Science and Technology Plan Projects of Huainan,ChinaProject(2012QNZ06)supported by the Youth Foundation of Anhui University of Science&technology of China
文摘To reduce the cost, size and complexity, a consumer digital camera usually uses a single sensor overlaid with a color filter array(CFA) to sample one of the red-green-blue primary color values, and uses demosaicking algorithm to estimate the missing color values at each pixel. A novel image correlation and support vector machine(SVM) based edge-adaptive algorithm was proposed, which can reduce edge artifacts and false color artifacts, effectively. Firstly, image pixels were separated into edge region and smooth region with an edge detection algorithm. Then, a hybrid approach switching between a simple demosaicking algorithm on the smooth region and SVM based demosaicking algorithm on the edge region was performed. Image spatial and spectral correlations were employed to create middle planes for the interpolation. Experimental result shows that the proposed approach produced visually pleasing full-color result images and obtained higher CPSNR and smaller S-CIELAB*ab?E than other conventional demosaicking algorithms.
基金National Natural Science Foundation of China(No.61272432)Qingdao Science and Technology Development Plan(No.12-1-4-6-(10)-jch)
文摘Watermarking system based on quantization index modulation (QIM) is increasingly popular in high payload applications,but it is inherently fragile against amplitude scaling attacks.In order to resist desynchronization attacks of QIM digital watermarking,a low density parity check (LDPC) code-aided QIM watermarking algorithm is proposed,and the performance of QIM watermarking system can be improved by incorporating LDPC code with message passing estimation/detection framework.Using the theory of iterative estimation and decoding,the watermark signal is decoded by the proposed algorithm through iterative estimation of amplitude scaling parameters and decoding of watermark.The performance of the proposed algorithm is closer to the dirty paper Shannon limit than that of repetition code aided algorithm when the algorithm is attacked by the additive white Gaussian noise.For constant amplitude scaling attacks,the proposed algorithm can obtain the accurate estimation of amplitude scaling parameters.The simulation result shows that the algorithm can obtain similar performance compared to the algorithm without desynchronization.
基金Supported by the National Natural Science Foundation of China(61333010,61203157)the Fundamental Research Funds for the Central Universities+2 种基金the National High-Tech Research and Development Program of China(2013AA040701)Shanghai Natural Science Foundation Project(15ZR1408900)Shanghai Key Technologies R&D Program Project(13111103800)
文摘The computation burden in the model-based predictive control algorithm is heavy when solving QR optimization with a limited sampling step, especially for a complicated system with large dimension. A fast algorithm is proposed in this paper to solve this problem, in which real-time values are modulated to bit streams to simplify the multiplication. In addition, manipulated variables in the prediction horizon are deduced to the current control horizon approximately by a recursive relation to decrease the dimension of QR optimization. The simulation results demonstrate the feasibility of this fast algorithm for MIMO systems.
文摘Intrusion detection aims to detect intrusion behavior and serves as a complement to firewalls.It can detect attack types of malicious network communications and computer usage that cannot be detected by idiomatic firewalls.Many intrusion detection methods are processed through machine learning.Previous literature has shown that the performance of an intrusion detection method based on hybrid learning or integration approach is superior to that of single learning technology.However,almost no studies focus on how additional representative and concise features can be extracted to process effective intrusion detection among massive and complicated data.In this paper,a new hybrid learning method is proposed on the basis of features such as density,cluster centers,and nearest neighbors(DCNN).In this algorithm,data is represented by the local density of each sample point and the sum of distances from each sample point to cluster centers and to its nearest neighbor.k-NN classifier is adopted to classify the new feature vectors.Our experiment shows that DCNN,which combines K-means,clustering-based density,and k-NN classifier,is effective in intrusion detection.
基金The National Natural Science Foundation of China(No.61771126,61372104)the Science and Technology Project of State Grid Corporation of China(o.SGRIXTKJ[2015] 349)
文摘A weighted selection combining (WSC) scheme is proposed to improve prediction accuracy for cooperative spectrum prediction in cognitive radio networks by exploiting spatial diversity. First, a genetic algorithm-based neural network (GANN) is designed to perform spectrum prediction in consideration of both the characteristics of the primary users (PU) and the effect of fading. Then, a fusion selection method based on the iterative self-organizing data analysis (ISODATA) algorithm is designed to select the best local predictors for combination. Additionally, a reliability-based weighted combination rule is proposed to make an accurate decision based on local prediction results considering the diversity of the predictors. Finally, a Gaussian approximation approach is employed to study the performance of the proposed WSC scheme, and the expressions of the global prediction precision and throughput enhancement are derived. Simulation results reveal that the proposed WSC scheme outperforms the other cooperative spectrum prediction schemes in terms of prediction accuracy, and can achieve significant throughput gain for cognitive radio networks.
基金Project(62073342)supported by the National Natural Science Foundation of ChinaProject(2014 AA 041803)supported by the Hi-tech Research and Development Program of China。
文摘The operation variables,including feed rate of ore slurry,caustic solution and live steams in the double-stream alumina digestion process,determine the product quality,process costs and the environment pollution.Previously,they were set by the technical workers according to the offline analysis results and an empirical formula,which leads to unstable process indices and high consumption frequently.So,a multi-objective optimization model is built to maintain the balance between resource consumptions and process indices by taking technical indices and energy efficiency as objectives,where the key technical indices are predicted based on the digestion kinetics of diaspore.A multi-objective state transition algorithm(MOSTA)is improved to solve the problem,in which a self-adaptive strategy is applied to dynamically adjust the operator factors of the MOSTA and dynamic infeasible threshold is used to handle constraints to enhance searching efficiency and ability of the algorithm.Then a rule based strategy is designed to make the final decision from the Pareto frontiers.The method is integrated into an optimal control system for the industrial digestion process and tested in the actual production.Results show that the proposed method can achieve the technical target while reducing the energy consumption.
基金The Academic Colleges and Universities Innovation Program 2.0(No.BP0719013)。
文摘To solve the hardware deployment problem caused by the vast demanding computational complexity of convolutional layers and limited hardware resources for the hardware network inference,a look-up table(LUT)-based convolution architecture built on a field-programmable gate array using integer multipliers and addition trees is used.With the help of the Winograd algorithm,the optimization of convolution and multiplication is realized to reduce the computational complexity.The LUT-based operator is further optimized to construct a processing unit(PE).Simultaneously optimized storage streams improve memory access efficiency and solve bandwidth constraints.The data toggle rate is reduced to optimize power consumption.The experimental results show that the use of the Winograd algorithm to build basic processing units can significantly reduce the number of multipliers and achieve hardware deployment acceleration,while the time-division multiplexing of processing units improves resource utilization.Under this experimental condition,compared with the traditional convolution method,the architecture optimizes computing resources by 2.25 times and improves the peak throughput by 19.3 times.The LUT-based Winograd accelerator can effectively solve the deployment problem caused by limited hardware resources.
文摘IR (Image Registration) is one of the important operation of image processing system which is the process of aligning two or more images into one coordinate system that are taken at different times, from different sensors, or from different viewpoints. It has a lot of applications especially medical imaging and remote sensing. The main purpose of this paper is to provide a comprehensive review of existing literatures available on image registration system and proposed a new feature-based IR technique using edge of images. We used edges as a feature of images for registration. It will be a useful document for researchers who will work on feature-based image registration regardless for specific applications.
基金Science and Technology Projects of State Grid Corporation of China(No.SGGSKY00FJJS1800140)。
文摘Aiming at the faults of some weak nodes in the concentrated solar power-photovoltaic(CSP-PV)hybrid power generation system,it is impossible to restore the transient voltage only relying on the reactive power regulation capability of the system itself.We propose a dynamic reactive power planning method suitable for CSP-PV hybrid power generation system.The method determines the installation node of the dynamic reactive power compensation device and its compensation capacity based on the reactive power adjustment capability of the system itself.The critical fault node is determined by the transient voltage stability recovery index,and the weak node of the system is initially determined.Based on this,the sensitivity index is used to determine the installation node of the dynamic reactive power compensation device.Dynamic reactive power planning optimization model is established with the lowest investment cost of dynamic reactive power compensation device and the improvement of system transient voltage stability.Furthermore,the component of the reactive power compensation node is optimized by particle swarm optimization based on differential evolution(DE-PSO).The simulation results of the example system show that compared with the dynamic position compensation device installation location optimization method,the proposed method can improve the transient voltage stability of the system under the same reactive power compensation cost.
文摘For certain applications, the paper proposes a LOD generation algorithm based on model feature, to measure the value of certain features as weight, and to just the geometrical characteristics and retains the full feature in the simplified model. Algorithm is simple and intuitive, LOD models can be generated by a continuous smooth transition and meet the requirements of real-time display. Experimental results show the effectiveness of the algorithm. Algorithm is simple and quick, broad applicability, the improve simplified algorithm is very suitable for modulation texture operator, generating algorithm based on a lookup table to meet the model requirements for real-time display.