传统PAM(Partitioning Around Medoids)算法时间复杂度较高,处理大数据集时效率低下.近年来,越来越多研究者使用MapReduce模型来使聚类算法获得更高的性能,然而MapReduce模型在算法迭代过程中需要多次重启任务、从文件系统读取数据和数...传统PAM(Partitioning Around Medoids)算法时间复杂度较高,处理大数据集时效率低下.近年来,越来越多研究者使用MapReduce模型来使聚类算法获得更高的性能,然而MapReduce模型在算法迭代过程中需要多次重启任务、从文件系统读取数据和数据洗牌,影响数据处理效率.本文提出两种基于MapReduce的融合PAM算法与仔细播种的聚类处理模型,在保持PAM算法聚类有效性的同时,在算法性能上获得显著提高.性能试验和聚类有效性实验的结果表明本文提出的方法达到了预期的效果且具有很好的可扩展性.展开更多
文摘传统PAM(Partitioning Around Medoids)算法时间复杂度较高,处理大数据集时效率低下.近年来,越来越多研究者使用MapReduce模型来使聚类算法获得更高的性能,然而MapReduce模型在算法迭代过程中需要多次重启任务、从文件系统读取数据和数据洗牌,影响数据处理效率.本文提出两种基于MapReduce的融合PAM算法与仔细播种的聚类处理模型,在保持PAM算法聚类有效性的同时,在算法性能上获得显著提高.性能试验和聚类有效性实验的结果表明本文提出的方法达到了预期的效果且具有很好的可扩展性.