同时定位与地图创建(simultaneous localization and mapping,SLAM)自1986年提出以来一直是机器人领域的热点问题,被认为是实现真正全自主移动机器人的关键。其目的是让机器人在未知环境下实现自身定位同时创建出环境地图。视觉SLAM(vis...同时定位与地图创建(simultaneous localization and mapping,SLAM)自1986年提出以来一直是机器人领域的热点问题,被认为是实现真正全自主移动机器人的关键。其目的是让机器人在未知环境下实现自身定位同时创建出环境地图。视觉SLAM(visual simultaneous localization and mapping,VSLAM)是仅用相机作为传感器的定位与制图。随着计算机视觉和机器人技术的发展,VSLAM已成为无人系统领域的研究焦点。本文对VSLAM的最新研究现状进行总结,阐述了VSLAM中的主要问题,分别介绍了VSLAM基于滤波和图优化的实现方法,并探讨了VSLAM的研究与发展方向。展开更多
传统的视觉同步定位与建图(simultaneous localization and mapping,SLAM)算法大多数建立在假设场景是静态的基础之上,这种假设限制了视觉SLAM在现实场景的应用。针对传统SLAM算法在动态环境下定位精度低、鲁棒性差的问题,提出了一种实...传统的视觉同步定位与建图(simultaneous localization and mapping,SLAM)算法大多数建立在假设场景是静态的基础之上,这种假设限制了视觉SLAM在现实场景的应用。针对传统SLAM算法在动态环境下定位精度低、鲁棒性差的问题,提出了一种实时动态视觉SLAM算法。首先所提出的算法以ORBSLAM3为基础,新增了一个语义线程,该线程与其他线程并行运行,可以避免语义线程运行较慢而影响跟踪线程的运行。然后使用移动概率更新和传播语义信息,将其保存在地图中,并且使用数据关联算法从跟踪中去除动态点。最后使用公共TUM数据集来评估,证明了所提出的算法在动态环境下的鲁棒性和实时性优于现有的算法。展开更多
针对激光雷达非匀速运动畸变问题,提出一种融合视觉惯性里程计和激光雷达里程计,进行三维地图构建与定位(simultaneous localization and mapping,SLAM)方法.经预处理和时间戳对齐后的数据,应用视觉估计和惯性测量单元(inertial measure...针对激光雷达非匀速运动畸变问题,提出一种融合视觉惯性里程计和激光雷达里程计,进行三维地图构建与定位(simultaneous localization and mapping,SLAM)方法.经预处理和时间戳对齐后的数据,应用视觉估计和惯性测量单元(inertial measurement unit,IMU)预积分对视觉进行初始化,通过约束的滑窗优化和视觉里程计的高频位姿,将传统雷达匀速运动模型改进为多阶段匀加速模型,从而降低点云畸变.同时,利用列文伯格-马夸尔特(Levenberg-Marquardt,LM)方法优化激光里程计,提出一种融合词袋模型的回环检测方法,最终实现三维地图构建.基于实车试验数据,通过与LEGO-LOAM(lightweight and ground-optimized lidar odometry and mapping on variable terrain)方法的结果对比,本文方法在平均误差和误差中位数上分别提升了16%和23%.展开更多
文摘同时定位与地图创建(simultaneous localization and mapping,SLAM)自1986年提出以来一直是机器人领域的热点问题,被认为是实现真正全自主移动机器人的关键。其目的是让机器人在未知环境下实现自身定位同时创建出环境地图。视觉SLAM(visual simultaneous localization and mapping,VSLAM)是仅用相机作为传感器的定位与制图。随着计算机视觉和机器人技术的发展,VSLAM已成为无人系统领域的研究焦点。本文对VSLAM的最新研究现状进行总结,阐述了VSLAM中的主要问题,分别介绍了VSLAM基于滤波和图优化的实现方法,并探讨了VSLAM的研究与发展方向。
文摘传统的视觉同步定位与建图(simultaneous localization and mapping,SLAM)算法大多数建立在假设场景是静态的基础之上,这种假设限制了视觉SLAM在现实场景的应用。针对传统SLAM算法在动态环境下定位精度低、鲁棒性差的问题,提出了一种实时动态视觉SLAM算法。首先所提出的算法以ORBSLAM3为基础,新增了一个语义线程,该线程与其他线程并行运行,可以避免语义线程运行较慢而影响跟踪线程的运行。然后使用移动概率更新和传播语义信息,将其保存在地图中,并且使用数据关联算法从跟踪中去除动态点。最后使用公共TUM数据集来评估,证明了所提出的算法在动态环境下的鲁棒性和实时性优于现有的算法。
文摘针对激光雷达非匀速运动畸变问题,提出一种融合视觉惯性里程计和激光雷达里程计,进行三维地图构建与定位(simultaneous localization and mapping,SLAM)方法.经预处理和时间戳对齐后的数据,应用视觉估计和惯性测量单元(inertial measurement unit,IMU)预积分对视觉进行初始化,通过约束的滑窗优化和视觉里程计的高频位姿,将传统雷达匀速运动模型改进为多阶段匀加速模型,从而降低点云畸变.同时,利用列文伯格-马夸尔特(Levenberg-Marquardt,LM)方法优化激光里程计,提出一种融合词袋模型的回环检测方法,最终实现三维地图构建.基于实车试验数据,通过与LEGO-LOAM(lightweight and ground-optimized lidar odometry and mapping on variable terrain)方法的结果对比,本文方法在平均误差和误差中位数上分别提升了16%和23%.