期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
亲和矩阵图卷积子空间聚类
1
作者 李丹阳 王伟 唐科威 《理论数学》 2024年第11期159-170,共12页
子空间聚类是聚类来源于底层子空间的数据的一个高效的方法。在近些年,基于谱聚类的方法成为了最受欢迎的子空间聚类方法之一。新近提出的自适应图卷积子空间聚类方法受图卷积网络的启发,使用图卷积技术去设计了新的特征提取的方法和系... 子空间聚类是聚类来源于底层子空间的数据的一个高效的方法。在近些年,基于谱聚类的方法成为了最受欢迎的子空间聚类方法之一。新近提出的自适应图卷积子空间聚类方法受图卷积网络的启发,使用图卷积技术去设计了新的特征提取的方法和系数矩阵的约束,取得了优异的效果。但其需要重构系数矩阵满足对称和非负的条件,这会限制重构系数矩阵的表示能力。为了克服这一缺陷,本文改为直接约束由重构系数矩阵生成的亲和矩阵,亲和矩阵天然具有对称和非负的性质,进而设计了亲和矩阵图卷积子空间聚类算法。不仅克服了求解模型的困难之处,还进行了对比实验在四个基准数据集上以此论证本文方法的有效性。Subspace clustering is an efficient method for clustering data derived from the bottom level subspace. In recent years, spectral clustering based methods have become one of the most popular subspace clustering methods. The recently proposed adaptive graph convolution subspace clustering method is inspired by graph convolutional networks and uses graph convolution techniques to design new feature extraction methods and constraints on coefficient matrices, achieving excellent results. But it requires the reconstruction coefficient matrix to satisfy symmetric and non negative conditions, which limits the representational power of the reconstructed coefficient matrix. To overcome this limitation, this paper proposes to directly constrain the affinity matrix generated from the reconstructed coefficient matrix, which naturally has symmetric and non negative properties. Therefore, an affinity matrix graph convolution subspace clustering algorithm is designed. Not only did it overcome the difficulties in solving the model, but it also conducted comparative experiments on four benchmark datasets to demonstrate the effectiveness of the proposed method. 展开更多
关键词 子空间 图卷积 亲和矩阵 基于谱聚类的方法
下载PDF
基于快速凸无穷范数极小化的大量子空间的子空间分割
2
作者 唐科威 穆梦娇 +3 位作者 李缙红 张杰 姜伟 彭兴璇 《图学学报》 CSCD 北大核心 2020年第6期954-961,共8页
子空间分割是计算机视觉和机器学习中的一个基本问题。由于实际问题中的数据往往类数较多,使得大量子空间的子空间分割问题显得尤为重要。近年来基于谱聚类的方法在子空间分割领域得到了越来越多的关注,但是在相关工作的实验中,子空间... 子空间分割是计算机视觉和机器学习中的一个基本问题。由于实际问题中的数据往往类数较多,使得大量子空间的子空间分割问题显得尤为重要。近年来基于谱聚类的方法在子空间分割领域得到了越来越多的关注,但是在相关工作的实验中,子空间的个数却往往不超过10个。无穷范数极小化是近年来提出的一个专门针对大量子空间的子空间分割问题的方法,其通过降低表示系数矩阵的差异性能有效地处理该问题,但是仍有一定的局限,例如计算速度仍不够快,缺乏针对独立子空间问题的理论保证。为此,提出快速凸无穷范数极小化,该个方法不仅能够降低表示系数矩阵的差异性,而且能够对独立子空间情况提供理论保障且计算速度更快,大量的实验证明了该方法的有效性。 展开更多
关键词 子空间分割 基于谱聚类的方法 大量子空间 无穷范数 快速算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部