虽然四面体网格具有强大的几何表征能力,但因其'过硬'特性而工程实践中较少采用。如何使四面体网格'变软'是目前数值计算研究重点。通过采用广义的应变光滑操作,对四面体网格采用一种新型基于四面体边的应变光滑方法(Ed...虽然四面体网格具有强大的几何表征能力,但因其'过硬'特性而工程实践中较少采用。如何使四面体网格'变软'是目前数值计算研究重点。通过采用广义的应变光滑操作,对四面体网格采用一种新型基于四面体边的应变光滑方法(Edge-based smoothed finite element method of tetrahedron,ES-FEM-T),并将该方法拓展到三维固体中黏弹塑性材料分析中。数值算例表明:在相同的网格时,ES-FEM-T计算效率要高于有限元和基于面光滑操作的有限元。由于该方法既继承四面体强大的几何表征能力,具有较好的计算效率和精度,具有广阔的工程运用前景。展开更多
文摘虽然四面体网格具有强大的几何表征能力,但因其'过硬'特性而工程实践中较少采用。如何使四面体网格'变软'是目前数值计算研究重点。通过采用广义的应变光滑操作,对四面体网格采用一种新型基于四面体边的应变光滑方法(Edge-based smoothed finite element method of tetrahedron,ES-FEM-T),并将该方法拓展到三维固体中黏弹塑性材料分析中。数值算例表明:在相同的网格时,ES-FEM-T计算效率要高于有限元和基于面光滑操作的有限元。由于该方法既继承四面体强大的几何表征能力,具有较好的计算效率和精度,具有广阔的工程运用前景。