期刊文献+
共找到2,733篇文章
< 1 2 137 >
每页显示 20 50 100
SARIMA-GRU组合模型的水位预测
1
作者 曹寒问 陈九江 李小玲 《南昌工程学院学报》 CAS 2024年第3期8-12,共5页
相较于传统的单一模型,组合模型在一定条件下具有更优的预测精度。为验证组合模型是否有利于提高模型的预测精度,本文以长江中游支流澧水石龟山水电站的水位数据为基础,建立SARIMA模型和GRU神经网络模型,并将这两种模型基于方差倒数法和... 相较于传统的单一模型,组合模型在一定条件下具有更优的预测精度。为验证组合模型是否有利于提高模型的预测精度,本文以长江中游支流澧水石龟山水电站的水位数据为基础,建立SARIMA模型和GRU神经网络模型,并将这两种模型基于方差倒数法和IOWA算子进行组合,最后比较单一模型和组合模型在该水位数据集上的预测精度差异。结果表明,适当的组合方式有利于提高模型预测精度,基于IOWA算子的组合模型具优良的预测性能。 展开更多
关键词 SarIMA GRU神经网络 水位预测 组合模型
下载PDF
零担物流时序预测的SARIMA-GRU-BPNN组合模型及应用
2
作者 秦音 郭杜杜 +2 位作者 周飞 王庆庆 王洋 《计算机工程与应用》 CSCD 北大核心 2024年第19期297-308,共12页
针对零担物流的需求物流量显著季节性、非线性和随机性特征使其预测难度大的问题,提出一种零担物流时序预测的SARIMA-GRU-BPNN组合模型的预测方法。使用季节性分解模型将物流量分解为趋势、季节性及残差,对趋势分量采用季节性差分自回... 针对零担物流的需求物流量显著季节性、非线性和随机性特征使其预测难度大的问题,提出一种零担物流时序预测的SARIMA-GRU-BPNN组合模型的预测方法。使用季节性分解模型将物流量分解为趋势、季节性及残差,对趋势分量采用季节性差分自回归移动平均模型(SARIMA)拟合线性变化,对季节性分量采用门控循环神经网络(GRU)拟合季节性变化,对残差分量采用反向传播神经网络(BPNN)拟合非线性及随机性变化,组合重构得到最终预测值。实验结果表明,与自身单一模型SARIMA、GRU及BPNN相比,均方根误差(RMSE)分别降低31.5%、34.5%及47.1%;与其他单一模型灰色模型、支持向量机、长短期记忆网络及多元线性回归相比,RMSE分别降低71.3%、68.9%、54.4%及70.7%;与组合模型ARIMA-GRU、ARIMA-BPNN及ARIMA-SVM相比,RMSE分别降低31.0%、43.0%及56.1%,且趋势和季节性分量预测模型拟合优度达到92%和99%,有效降低整体预测误差,提升了预测精度和模型稳健性。 展开更多
关键词 零担物流 需求预测 时序分解 组合模型 人工神经网络
下载PDF
基于SARIMA-LSTM组合模型的油气集输系统能耗预测
3
作者 贺思宸 陈由旺 +4 位作者 朱英如 侯磊 刘珈铨 满建峰 张鑫儒 《油气田地面工程》 2024年第7期82-89,共8页
油气集输是油田开发生产过程的重要阶段,准确预测油气集输系统能耗能够为生产调度和能源管控提供支持。为提高油气集输系统能耗预测的准确性,针对其线性和非线性特征,综合考虑数理统计和机器学习预测方法的优缺点,提出一种基于季节性差... 油气集输是油田开发生产过程的重要阶段,准确预测油气集输系统能耗能够为生产调度和能源管控提供支持。为提高油气集输系统能耗预测的准确性,针对其线性和非线性特征,综合考虑数理统计和机器学习预测方法的优缺点,提出一种基于季节性差分自回归积分滑动平均(SARIMA)和长短期记忆(LSTM)神经网络的组合预测模型。根据S油田M环状掺水油气集输系统6年的运行数据,设计组合模型的网络结构,训练组合模型的网络参数。研究结果表明:与传统的SARIMA模型和LSTM神经网络相比,组合模型对三个能耗指标的预测准确性显著提高,可为企业调整生产运行方案和优化能源管控方案提供指导和数据支持。 展开更多
关键词 油气集输系统 能耗预测 SarIMA模型 LSTM神经网络 组合模型
下载PDF
基于奇异谱分解和LSTM-ARIMA组合模型的生猪价格预测 被引量:1
4
作者 付莲莲 方青 +1 位作者 袁冬宇 滕佳敏 《中国农机化学报》 北大核心 2024年第5期176-181,252,共7页
针对生猪价格波动过于剧烈难以预测的问题,提出基于奇异谱分解的LSTM-ARIMA组合模型对生猪价格进行预测。以2000年1月-2021年12月的月度价格数据作为样本,利用奇异谱分析对生猪价格数据进行分解,得到趋势项和波动项,选用累计贡献率达前... 针对生猪价格波动过于剧烈难以预测的问题,提出基于奇异谱分解的LSTM-ARIMA组合模型对生猪价格进行预测。以2000年1月-2021年12月的月度价格数据作为样本,利用奇异谱分析对生猪价格数据进行分解,得到趋势项和波动项,选用累计贡献率达前70%的构建趋势项,剩下的30%构造波动项。趋势项非平稳且具有长记忆性,对其建立LSTM模型;波动项平稳,对其建立ARIMA模型,最后将两部分预测结果重组作为生猪价格的预测值,构建LSTM-ARIMA组合预测模型。将预测值和生猪真实价格进行对比,结果表明:预测值与真实值之间的均方根误差RMSE为2.75,平均绝对百分比误差MAPE为10.81%,平均绝对误差MAE为2.27,方向对称性DS为81.81;此组合模型能很好地预测生猪价格走势,对我国生猪价格预测具有更高地适用性与参考。 展开更多
关键词 生猪价格预测 奇异谱分析 组合模型 LSTM arIMA
下载PDF
基于AR-LSTM-BP的CPI组合预测模型
5
作者 孙春 庄科俊 崔培贤 《喀什大学学报》 2024年第3期30-34,共5页
针对居民消费价格指数(CPI)预测准确性的问题,提出一种AR-LSTM-BP组合预测模型.首先分别用回归(AR)、长短时记忆网络(LSTM)和BP神经网络这三种模型对CPI预测,并对预测结果进行比较分析;随后引入诱导有序加权调和平均算子(IOWHA)的概念,... 针对居民消费价格指数(CPI)预测准确性的问题,提出一种AR-LSTM-BP组合预测模型.首先分别用回归(AR)、长短时记忆网络(LSTM)和BP神经网络这三种模型对CPI预测,并对预测结果进行比较分析;随后引入诱导有序加权调和平均算子(IOWHA)的概念,构建AR-LSTM-BP组合预测模型.结果表明,IOWHA组合预测模型的误差均小于单项预测模型,预测结果准确性较高,能够更好地反映CPI的波动走势. 展开更多
关键词 CPI 组合预测模型 自回归模型 IOWHA算子
下载PDF
基于ARIMA-LSTM组合模型的工业生产车间粉尘浓度预测
6
作者 彭涛 赵生慧 +1 位作者 秦吉胜 赵亮 《电脑知识与技术》 2024年第19期9-13,共5页
在工业生产环境中,精确预测车间内的粉尘浓度对于确保工作场所的安全和产品质量至关重要,而该环境下单一的预测模型往往难以捕捉所有关键的数据特征。为了提高预测精度,该研究通过ARIMA模型提取数据的线性特征,使用LSTM模型拟合预测残... 在工业生产环境中,精确预测车间内的粉尘浓度对于确保工作场所的安全和产品质量至关重要,而该环境下单一的预测模型往往难以捕捉所有关键的数据特征。为了提高预测精度,该研究通过ARIMA模型提取数据的线性特征,使用LSTM模型拟合预测残差中的非线性特征,构建基于ARIMA-LSTM的组合预测模型。该模型采用均方误差(MSE)、平均绝对误差(MAE)和平均绝对百分比误差(MAPE)作为评估指标。基于某厂生产车间的粉尘浓度时间序列数据进行实验评估,结果表明该模型的MSE、MAE和MAPE分别为0.74、0.66和3.29%,预测精度均优于单一的ARIMA模型,验证了模型的有效性和可靠性。 展开更多
关键词 工业车间 粉尘浓度预测 arIMA LSTM 组合模型 时间序列
下载PDF
基于ARIMA-GM组合模型的农作物播种面积预测——以吉林省为例 被引量:1
7
作者 赵子越 刘雪梅 《吉林水利》 2024年第1期1-9,15,共10页
农作物种植面积预测能够有效帮助生产者提前掌握未来农业的生产状况。为准确预测农作物播种面积变化情况,寻求一种新型的组合模型权重计算方法。以吉林省历年作物播种面积为原始数据,建立GM(1,1)与ARIMA时间序列组合预测模型。综合使用... 农作物种植面积预测能够有效帮助生产者提前掌握未来农业的生产状况。为准确预测农作物播种面积变化情况,寻求一种新型的组合模型权重计算方法。以吉林省历年作物播种面积为原始数据,建立GM(1,1)与ARIMA时间序列组合预测模型。综合使用平均绝对百分数误差、残差平方和最小法及最小二乘法确定组合模型的权系数,在此基础上将三种权系数组合优化后得到最终权重,两种模型权重分别为0.44976和0.55024。预测结果表明:该组合权重与单一权重相比,可将组合模型的预测精度提高约0.4%。 展开更多
关键词 灰色理论 arIMA 权重系数重分配 组合预测模型
下载PDF
预测动车组牵引系统故障率的TSOBP-ARIMA-Prophet组合模型
8
作者 张雨晨 戴贤春 +2 位作者 刘敬辉 李秋芬 代成烨 《中国铁道科学》 EI CAS CSCD 北大核心 2024年第4期147-157,共11页
针对单一模型预测故障率时的适用性差异问题,在考虑动车组牵引系统故障率数据特点的基础上,提出TSOBP-ARIMA-Prophet组合模型。首先,针对动车组牵引系统故障率的复杂非线性,引入金枪鱼群算法(TSO)优化BP模型,训练出TSOBP预测模型;其次,... 针对单一模型预测故障率时的适用性差异问题,在考虑动车组牵引系统故障率数据特点的基础上,提出TSOBP-ARIMA-Prophet组合模型。首先,针对动车组牵引系统故障率的复杂非线性,引入金枪鱼群算法(TSO)优化BP模型,训练出TSOBP预测模型;其次,针对故障率的非平稳波动性,选取ARIMA预测模型;然后,针对故障率的季节周期性,选取Prophet预测模型;最后,运用方差倒数法对3个模型的预测结果赋权,得到TSOBP-ARIMA-Prophet组合模型的预测结果。以某动车组牵引系统为例,采用该组合模型预测故障率,并与3个单一模型及TSOBP-ARIMA组合模型对比验证其预测能力。结果表明:该组合模型预测时均方误差为0.0752,较TSOBP,ARIMA和Prophet模型单独预测时分别降低了45.83%,61.65%和53.42%,预测精度显著提高,且较TSOBP-ARIMA组合模型对数据趋势的感知力更优,可有效提升对动车组牵引系统故障率的预测能力。 展开更多
关键词 动车组牵引系统 故障率预测 组合模型 BP模型 金枪鱼群算法 arIMA模型 Prophet模型
下载PDF
基于MARS及其组合模型的安徽省碳达峰的预测研究
9
作者 胡学平 高文祥 陈书琴 《环境科学与技术》 CAS CSCD 北大核心 2024年第10期229-236,共8页
该文基于安徽省1991-2022年的碳排放量数据,研究安徽省碳排放影响因素和预测碳达峰的时间。结果显示,在多种单一机器学习模型中,多元自适应回归样条(MARS)模型的拟合效果最佳,在测试集上的拟合效果较优,且具有较好的鲁棒性,影响安徽省... 该文基于安徽省1991-2022年的碳排放量数据,研究安徽省碳排放影响因素和预测碳达峰的时间。结果显示,在多种单一机器学习模型中,多元自适应回归样条(MARS)模型的拟合效果最佳,在测试集上的拟合效果较优,且具有较好的鲁棒性,影响安徽省碳排放量的因素重要性排名为:单位GDP能耗>人口城镇化率>人均GDP>农业生产技术>二产比重>人口总数,即经济和技术因素是影响安徽省碳排放量的重要因素;采用加权平均方法(WA)和多元线性回归组合方法(Regression)进一步提高拟合精度,发现Re⁃gression组合方法精度高于WA法和单一MARS模型法;采用情景分析法,设置基准模式、粗放模式和低碳模式预测安徽省碳排放量,结果显示,在基准模式和粗放模式下安徽省碳排放量仍然呈现增加趋势,而在低碳模式下可以在2030年实现碳达峰。为促进安徽省能源转型和经济高质量发展,推动中国“双碳”目标的实现,该文提出了转变经济发展模式,提升人均GDP、加快技术进步特别是农业生产技术的发展,降低能源强度,优化能源消费结构等对策。 展开更多
关键词 碳达峰 低碳模式 MarS模型 组合预测
下载PDF
基于新陈代谢GM-ARIMA组合模型的广东省人口老龄化预测研究
10
作者 张集锦 《统计学与应用》 2024年第2期385-396,共12页
本文基于2000~2022年广东省人口结构数据,利用组合权重系数法构建新陈代谢GM(1, 1)-ARIMA模型对其未来人口结构变化情况进行预测研究。为了弥补ARIMA模型样本需求量高,拟合更多反映线性趋势的劣势,克服传统灰色预测在中长期预测的不可... 本文基于2000~2022年广东省人口结构数据,利用组合权重系数法构建新陈代谢GM(1, 1)-ARIMA模型对其未来人口结构变化情况进行预测研究。为了弥补ARIMA模型样本需求量高,拟合更多反映线性趋势的劣势,克服传统灰色预测在中长期预测的不可操作性和指数爆炸增长导致的预测偏离问题,首先利用最小二乘、MAPE和组合权重系数法构建基于新陈代谢GM(1, 1)-ARIMA的组合预测模型,接着引入TIC,MAPE和RMSE三个评价指标评估不同组合模型的精度,最终选取利用组合权重系数法构建的组合模型进行拟合预测。预测结果表明:该组合模型比单项模型预测精度提高0.32%,具有参考价值。同时表明广东人口年龄结构较为年轻,但进入初始少子化社会,未来将不可避免地以大规模、高速度进入深度老龄化和超老龄化社会,需引起高度重视。 展开更多
关键词 人口老龄化 新陈代谢GM(1 1) arIMA模型 组合预测模型
下载PDF
Prophet-LSTM组合模型在运输航空征候预测中的应用 被引量:1
11
作者 杜红兵 邢梦柯 赵德超 《安全与环境学报》 CAS CSCD 北大核心 2024年第5期1878-1885,共8页
为准确预测中国运输航空征候万时率,提出了一种将时间序列模型和神经网络模型组合的预测方法。首先,利用2008年1月—2020年12月的运输航空征候万时率数据建立Prophet模型,使用RStudio软件进行模型拟合,获取运输航空征候万时率的线性部分... 为准确预测中国运输航空征候万时率,提出了一种将时间序列模型和神经网络模型组合的预测方法。首先,利用2008年1月—2020年12月的运输航空征候万时率数据建立Prophet模型,使用RStudio软件进行模型拟合,获取运输航空征候万时率的线性部分;其次,利用长短期记忆网络(Long Short-Term Memory,LSTM)建模,获取运输航空征候万时率的非线性部分;最后,利用方差倒数法建立Prophet-LSTM组合模型,使用建立的组合模型对2021年1—12月运输航空征候万时率进行预测,将预测结果与实际值进行对比验证。结果表明,Prophet-LSTM组合模型的EMA、EMAP、ERMS分别为0.0973、16.1285%、0.1287。相较于已有的自回归移动平均(Auto Regression Integrated Moving Average,ARIMA)+反向传播神经网络(Back Propagation Neural Network,BPNN)组合模型和GM(1,1)+ARIMA+LSTM组合模型,Prophet-LSTM组合模型的EMA、EMAP、ERMS分别减小了0.0259、10.4874百分点、0.0143和0.0128、2.0599百分点、0.0086,验证了Prophet-LSTM组合模型的预测精度更高,性能更优良。 展开更多
关键词 安全社会工程 运输航空征候 Prophet模型 长短期记忆网络(LSTM)模型 组合预测模型
下载PDF
D-S理论和Markov链组合的桥梁性能退化预测研究
12
作者 杨国俊 田里 +2 位作者 唐光武 毛建博 杜永峰 《应用数学和力学》 CSCD 北大核心 2024年第4期416-428,共13页
为准确预测桥梁性能退化,考虑到数据随机性和微小扰动发生状态跳跃,提出了一种D-S(Dempster-Shafer)证据理论和Markov链组合的桥梁性能退化组合预测模型和性能退化率的概念.该模型基于指数平滑(exponential smoothing,ES)方法获得新的... 为准确预测桥梁性能退化,考虑到数据随机性和微小扰动发生状态跳跃,提出了一种D-S(Dempster-Shafer)证据理论和Markov链组合的桥梁性能退化组合预测模型和性能退化率的概念.该模型基于指数平滑(exponential smoothing,ES)方法获得新的预测数据序列,并利用Markov链和D-S理论不断进行优化,从而实现桥梁性能退化的组合预测.实际工程的应用结果表明:性能退化率可以直观地表征在梁性能退化的速度.其次,该模型的平均相对误差为1.54%,较于回归、灰色和模糊加权Markov链模型,精度分别提高了1.11%,0.88%和2.8%,而后验差比值为0.242,小于0.35;模型的标准差为9.021,相比其他模型分别减小了3.978,3.405和7.500,而变异系数为0.109,均小于其他模型,验证了组合预测模型在精度和稳定性方面的优越性,可为在役桥梁结构性能退化预测与维护提供理论基础. 展开更多
关键词 桥梁工程 性能退化预测 D-S证据理论 MarKOV链 组合预测模型 桥梁性能退化率
下载PDF
N-Calculator与NUFER耦合模型和组合预测法在食物氮足迹研究中的应用
13
作者 乔森 赵骏廷 郑洪波 《安全与环境学报》 CAS CSCD 北大核心 2024年第2期778-786,共9页
为改善传统N-Calculator模型的局限性,加强食物氮足迹核算结果与环境影响的联系,提高活性氮管理预见性,将N-Calculator模型与食物系统养分流动(Nutrient Flows in Food Chains,Environment and Resources Use,NUFER)模型进行耦合,以估... 为改善传统N-Calculator模型的局限性,加强食物氮足迹核算结果与环境影响的联系,提高活性氮管理预见性,将N-Calculator模型与食物系统养分流动(Nutrient Flows in Food Chains,Environment and Resources Use,NUFER)模型进行耦合,以估算我国2001—2020年人均食物氮足迹,建立组合预测体系。结果显示:2001—2020年,我国人均食物氮足迹由16.04 kg N/a增至18.95 kg N/a;全国食物氮足迹由20.47 Mt N/a增至26.76 Mt N/a;居民饮食结构正由以植物源食物为主的低氮消费模式转向以动物源食物为主的高氮消费模式;食物生产过程产生的活性氮的最终归宿为大气(64.3%)、水体和深层土壤(35.7%);我国食物氮足迹与人均可支配收入、城市化率、动物源食物消费氮占比呈正相关性,与恩格尔系数呈负相关性;未来10 a我国人均食物氮足迹呈增长趋势,预测结果显示年均增幅为0.16 kg N/a。 展开更多
关键词 环境学 食物氮足迹 活性氮 N-Calculator模型 NUFER模型 组合预测模型
下载PDF
基于CEEMDAN-GRU组合模型的碳排放交易价格预测研究
14
作者 傅魁 钱素彬 徐尚英 《武汉理工大学学报(信息与管理工程版)》 CAS 2024年第1期62-66,共5页
准确的碳价格预测有助于监管部门观测碳交易市场运行状况及投资者进行科学决策,对实现碳达峰和碳中和具有重要作用。但碳价序列具有非线性、非平稳性和高噪声的特性,很难对其进行准确预测。将完全自适应噪声集合经验模态分解(CEEMDAN)... 准确的碳价格预测有助于监管部门观测碳交易市场运行状况及投资者进行科学决策,对实现碳达峰和碳中和具有重要作用。但碳价序列具有非线性、非平稳性和高噪声的特性,很难对其进行准确预测。将完全自适应噪声集合经验模态分解(CEEMDAN)方法与门控循环单元(GRU)相结合,构建一个碳排放交易价格预测模型。该模型基于分解、集成思想,利用CEEMDAN将原始碳价序列分解,获得不同频率的本征模函数(IMF)和残差序列,使用GRU神经网络分别为各子序列建立预测模型,最后集成预测结果得到碳价预测值。以湖北省碳交易市场的日度成交价为例进行实证分析,结果表明:相较于其他5种基准模型,CEEMDAN-GRU模型具有更小的预测误差和更高的拟合优度,在碳价格预测上具有一定的优势。 展开更多
关键词 碳价格预测 组合模型 CEEMDAN GRU 机器学习
下载PDF
基于自适应AR模型巡航飞行参数预测研究
15
作者 钱宇 王立新 +1 位作者 张恒 刘瑜 《计算机应用与软件》 北大核心 2024年第4期73-79,共7页
为更准确实现飞行参数趋势预测,提出一种基于自适应自回归(AR)模型的稳定巡航飞行参数预测方法。根据稳定巡航参数筛选条件,获取建模所需飞行参数。利用卡尔曼滤波原理估计AR模型参数,并与飞行参数构建系统方程,利用无迹卡尔曼滤波实时... 为更准确实现飞行参数趋势预测,提出一种基于自适应自回归(AR)模型的稳定巡航飞行参数预测方法。根据稳定巡航参数筛选条件,获取建模所需飞行参数。利用卡尔曼滤波原理估计AR模型参数,并与飞行参数构建系统方程,利用无迹卡尔曼滤波实时更新、修正AR模型参数估计值,将自适应AR模型的预测值与曲线拟合模型和灰色模型的预测值进行对比。以波音B777-300ER飞机的快速存取记录器数据样本进行仿真验证,结果表明:自适应AR模型在数据预测和收敛速率方面均更优,可有效降低预报模型随步数增加导致的精度误差,提高参数预测准确性。研究在飞机维修保障、状态监控与预测等方面具有重要作用。 展开更多
关键词 无迹卡尔曼滤波 自适应ar模型 飞行参数预测 曲线拟合模型 灰色模型
下载PDF
配电网负荷预测中信号分解和预测模型组合的双层优化策略
16
作者 张扬 《智慧电力》 北大核心 2024年第9期104-111,共8页
负荷时间序列的波动性和非线性特征的加剧对负荷预测方法提出了更高的要求,而常规组合预测方法针对海量负荷数据存在应用局限性问题。为此,提出了配电网负荷预测中时序分解方法和预测模型组合的双层优化策略。首先针对某一负荷预测数据... 负荷时间序列的波动性和非线性特征的加剧对负荷预测方法提出了更高的要求,而常规组合预测方法针对海量负荷数据存在应用局限性问题。为此,提出了配电网负荷预测中时序分解方法和预测模型组合的双层优化策略。首先针对某一负荷预测数据,在时序信号分解层配置权重,以负荷均方根误差最小寻优各分解方法的权重系数,进而获得各时序信号分解方法的最优组合;在此基础上,在预测模型层进行组合方案寻优,通过配置权重系数以获得各预测模型的最优组合,进一步提升负荷预测的精度。仿真结果表明,所提策略可根据预测对象的特征优化组合各信号分解方法和预测模型,降低了配电网负荷序列的非平稳性对预测精度的影响。 展开更多
关键词 配电网 预测模型 时序信号分解 双层优化 组合预测
下载PDF
基于XGBoost-SVR组合模型的高速公路建造碳排放量预测方法研究
17
作者 林宇亮 熊锦江 +1 位作者 邢浩 宁曦 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第7期2588-2599,共12页
开展高速公路碳排放量预测是实现交通领域节能减排的重要内容之一。选取高速公路建设中影响碳排放的路基长度、路面面积、桥梁长度、隧道长度等14个参数,采用生命周期评价法(LCA)对高速公路建造碳排放量进行核算,获得80个高速公路碳排... 开展高速公路碳排放量预测是实现交通领域节能减排的重要内容之一。选取高速公路建设中影响碳排放的路基长度、路面面积、桥梁长度、隧道长度等14个参数,采用生命周期评价法(LCA)对高速公路建造碳排放量进行核算,获得80个高速公路碳排放样本,并对碳排放量影响参数的重要性进行分析。通过等值赋权、残差赋权和自适应赋权3种赋权组合方式,建立XGBoost-SVR机器学习组合模型。结合高速公路碳排放样本,通过XGBoost-SVR组合模型训练得到碳排放量预测结果。基于误差和相关指数分析,对3种赋权方式的组合模型预测结果进行评判,并与单机器学习模型结果进行对比。研究结果表明:XGBoostSVR组合模型融合了XGBoost和SVR模型的优点,其预测效果明显优于单机器学习模型的预测效果;对比等值赋权、残差赋权和自适应赋权,基于自适应赋权的XGBoost-SVR模型预测精度最高,建议应用于高速公路建造碳排放量预测。 展开更多
关键词 高速公路 碳排放量预测 组合模型 自适应赋权
下载PDF
基于SARIMA和SVR组合模型的转向架系统寿命评估
18
作者 师蔚 范乔 +2 位作者 杨洋 胡定玉 廖爱华 《铁道机车车辆》 北大核心 2024年第1期157-163,共7页
随着地铁运营时间和里程的增加,地铁车辆逐渐接近其理论寿命,为确保车辆运行安全性,需对其重要子系统进行健康状态及剩余寿命评估。文中选取车辆转向架系统作为研究对象,提出了一种基于协方差优选法的季节性回归移动平均(SARIMA)和支持... 随着地铁运营时间和里程的增加,地铁车辆逐渐接近其理论寿命,为确保车辆运行安全性,需对其重要子系统进行健康状态及剩余寿命评估。文中选取车辆转向架系统作为研究对象,提出了一种基于协方差优选法的季节性回归移动平均(SARIMA)和支持向量回归(SVR)的组合模型对转向架寿命进行评估。首先,将车辆转向架系统历史故障率转化为健康指数,然后基于协方差优选法将SARIMA和SVR进行赋权组合,根据转向架系统历史健康指数进行预测,最后建立历史和预测的健康指数与运行时间的数学模型,分析得到转向架系统的剩余寿命。以某地铁车辆转向架系统为例进行算例分析及验证,结果表明组合模型可更准确地预测其健康状态,为有关维修部门开展维修维护策略提供理论依据,估计得出其剩余寿命,为车辆寿命后期退役及延寿决策提供理论数据分析支撑。 展开更多
关键词 转向架系统 寿命预测 季节性回归移动平均和支持向量回归(SarIMA和SVR) 组合模型 协方差优选法
下载PDF
基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型
19
作者 唐非 《太阳能学报》 EI CAS CSCD 北大核心 2024年第7期735-744,共10页
针对风电场短期风速预测准确度不高的问题,提出一种基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型。首先,为突出短期风速的局部特征并降低建模难度,通过互补集成经验模态分解算法将短期风速分解为若干个稳定分量。然后... 针对风电场短期风速预测准确度不高的问题,提出一种基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型。首先,为突出短期风速的局部特征并降低建模难度,通过互补集成经验模态分解算法将短期风速分解为若干个稳定分量。然后,利用信息熵和近似熵来判定各分量的复杂度,高复杂度分量选择最小二乘支持向量机、低复杂度分量选择随机配置网络作为对应的预测模型。利用Stacking算法对每个模型的预测值进行融合,使预测精度得到提升。最后,通过一组实际的短期风速数据作为研究对象,将提出的预测模型应用于其预测。对比结果表明,所提预测模型可提高短期风速的预测精度。 展开更多
关键词 风能 短期风速 组合预测 互补集成经验模态分解 模型 Stacking融合
下载PDF
基于高频组合片段-基因表达式编程算法的轨道交通地面沉降预测模型
20
作者 胡珉 卢孟栋 《城市轨道交通研究》 北大核心 2024年第8期206-210,共5页
[目的]地面沉降预测和控制是轨道交通盾构法隧道施工中最为关注的问题之一。为了解决现有地面沉降预测和控制中存在的模型表达过于复杂且缺乏解释性的问题,需要一种既简洁清晰,又能够描述复杂问题的可解释模型,GEP(基因表达式编程)算法... [目的]地面沉降预测和控制是轨道交通盾构法隧道施工中最为关注的问题之一。为了解决现有地面沉降预测和控制中存在的模型表达过于复杂且缺乏解释性的问题,需要一种既简洁清晰,又能够描述复杂问题的可解释模型,GEP(基因表达式编程)算法提供了这种可能性,因此需对基于HFS(高频组合片段)-GEP算法的轨道交通地面沉降预测模型进行深入研究。[方法]以杭绍城际铁路某区段盾构隧道工程为依托,选取盾构施工过程中的土舱压力、刀盘扭矩、刀盘转速、推进速度、总推力、隧道埋深及盾尾注浆量等参数作为关键输入型施工参数,地面沉降作为输出型施工参数,通过备选公式集筛选以及HFS选取,建立基于HFS-GEP算法的轨道交通地面沉降预测模型。利用该模型对第180环—第210环区段的关键施工参数进行优化调整,分析盾构施工参数变化对地面最终沉降的影响效果。[结果及结论]基于HFS-GEP算法的地面沉降预测模型可以反映盾构施工参数与地面最终沉降的显式关系;相较于传统GEP算法的地面沉降预测模型,该模型准确度更高,结构更为简洁,且收敛速度更快。通过对盾构关键施工参数进行优化调整,该模型可将第180环—第210环区段的最终沉降量控制在10 mm以内。 展开更多
关键词 轨道交通 地面沉降预测模型 高频组合片段 基因表达式编程算法
下载PDF
上一页 1 2 137 下一页 到第
使用帮助 返回顶部