期刊文献+
共找到2,568篇文章
< 1 2 129 >
每页显示 20 50 100
考虑季节特性与数据窗口的短期光伏功率预测组合模型
1
作者 张静 熊国江 《电力工程技术》 北大核心 2025年第1期183-192,共10页
光伏功率的间歇性和随机性因季节变化呈现出不同的特点,考虑季节特性对提高光伏功率预测精度具有重要意义。因此,文中提出一种考虑季节特性和数据窗口的短期光伏功率预测组合模型。首先,通过皮尔逊相关系数法确定对光伏功率贡献度高的... 光伏功率的间歇性和随机性因季节变化呈现出不同的特点,考虑季节特性对提高光伏功率预测精度具有重要意义。因此,文中提出一种考虑季节特性和数据窗口的短期光伏功率预测组合模型。首先,通过皮尔逊相关系数法确定对光伏功率贡献度高的气象因素,降低预测模型的输入特征维数。其次,对比不同季节下不同模型的光伏功率预测精度,选择光伏功率预测误差最小且相关性最低的2个模型构建组合模型,即门控循环单元(gated recurrent unit,GRU)模型和极限梯度提升(extreme gradient boosting,XGboost)模型。然后,分析历史气象数据中不同输入窗口对GRU-XGboost模型预测精度的影响,确定最优数据窗口。最后,在此基础上分别采用GRU和XGboost对光伏功率进行预测,将2个预测结果加权组合得到最终预测结果。结果表明,与其他模型相比,所提模型具有更强的适应性和更高的预测精度。 展开更多
关键词 短期光伏功率预测 季节特性 数据窗口 门控循环单元(GRU) 极限梯度提升(XGboost) 组合模型
下载PDF
基于智能组合模型的大坝变形预测预报研究
2
作者 李双平 刘祖强 +4 位作者 张斌 郑俊星 王华为 李永华 苏森南 《中国水利》 2025年第2期65-72,共8页
针对数字孪生水利工程大坝安全“四预”中预测预报的准确性和可靠性需求,提出智能组合模型系统方法。该方法通过深入分析大坝变形的多重影响因素,结合信号处理技术,智能地分离出主导性的大坝变形趋势分量。随后,采用智能算法精确匹配最... 针对数字孪生水利工程大坝安全“四预”中预测预报的准确性和可靠性需求,提出智能组合模型系统方法。该方法通过深入分析大坝变形的多重影响因素,结合信号处理技术,智能地分离出主导性的大坝变形趋势分量。随后,采用智能算法精确匹配最优拟合模型,并结合灰色模型、时间序列模型及神经网络等多种建模技术,构建了一个高度集成、具有自适应能力的智能组合模型。通过丹江口大坝变形时间序列的训练和优化,并与传统统计模型预测结果对比验证,实验表明,智能组合模型在预测精度、数据适应性和鲁棒性方面具有显著优势,尤其是在处理非线性关系和长时序依赖性方面表现突出,同时有效提升了外延预测精度和泛化能力。此外,该模型能够提前1个周期(时长为一年)准确预测大坝关键部位的潜在变形趋势,为工程人员提供充足的时间采取预防措施,减少潜在风险。利用智能组合模型开展丹江口大坝的变形预测与预报,不仅提升了监测系统的智能化水平,还为大坝的安全评估、风险预警和科学管理提供了有力技术支撑。 展开更多
关键词 智能组合模型 泛化能力 鲁棒性 大坝变形 预测预报
下载PDF
基于GRNN的组合预测模型在传染病发病率预测中的应用 被引量:6
3
作者 叶晓军 沈毅 +1 位作者 任茹香 范伟忠 《浙江预防医学》 2012年第1期8-13,共6页
目的研究基于GRNN的组合预测模型拟合传染病发病率的优越性和不足。方法以浙中某市1998—2008年的肺结核发病率为研究资料,分别构建了灰色模型和ARIMA模型,以这两种模型为基础构建了基于GRNN的组合预测模型。结果残差修正GM(1,1)模型、A... 目的研究基于GRNN的组合预测模型拟合传染病发病率的优越性和不足。方法以浙中某市1998—2008年的肺结核发病率为研究资料,分别构建了灰色模型和ARIMA模型,以这两种模型为基础构建了基于GRNN的组合预测模型。结果残差修正GM(1,1)模型、ARIMA(1,0,1)*(1,1,0)12模型、基于GRNN的组合预测模型的MSE,MAE,MAPE和MER分别为37.451,5.692,53.69%,48.51%;18.509,3.761,35.13%,32.05%;9.961,2.571,25.6%,21.9%。结论基于GRNN的组合预测模型的预测精度优于两种单项模型。 展开更多
关键词 灰色模型 ARIMA模型 基于grnn的组合预测模型 发病率预测
原文传递
基于XGBoost-SVR组合模型的高速公路建造碳排放量预测方法研究 被引量:1
4
作者 林宇亮 熊锦江 +1 位作者 邢浩 宁曦 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第7期2588-2599,共12页
开展高速公路碳排放量预测是实现交通领域节能减排的重要内容之一。选取高速公路建设中影响碳排放的路基长度、路面面积、桥梁长度、隧道长度等14个参数,采用生命周期评价法(LCA)对高速公路建造碳排放量进行核算,获得80个高速公路碳排... 开展高速公路碳排放量预测是实现交通领域节能减排的重要内容之一。选取高速公路建设中影响碳排放的路基长度、路面面积、桥梁长度、隧道长度等14个参数,采用生命周期评价法(LCA)对高速公路建造碳排放量进行核算,获得80个高速公路碳排放样本,并对碳排放量影响参数的重要性进行分析。通过等值赋权、残差赋权和自适应赋权3种赋权组合方式,建立XGBoost-SVR机器学习组合模型。结合高速公路碳排放样本,通过XGBoost-SVR组合模型训练得到碳排放量预测结果。基于误差和相关指数分析,对3种赋权方式的组合模型预测结果进行评判,并与单机器学习模型结果进行对比。研究结果表明:XGBoostSVR组合模型融合了XGBoost和SVR模型的优点,其预测效果明显优于单机器学习模型的预测效果;对比等值赋权、残差赋权和自适应赋权,基于自适应赋权的XGBoost-SVR模型预测精度最高,建议应用于高速公路建造碳排放量预测。 展开更多
关键词 高速公路 碳排放量预测 组合模型 自适应赋权
下载PDF
Prophet-LSTM组合模型在运输航空征候预测中的应用 被引量:1
5
作者 杜红兵 邢梦柯 赵德超 《安全与环境学报》 CAS CSCD 北大核心 2024年第5期1878-1885,共8页
为准确预测中国运输航空征候万时率,提出了一种将时间序列模型和神经网络模型组合的预测方法。首先,利用2008年1月—2020年12月的运输航空征候万时率数据建立Prophet模型,使用RStudio软件进行模型拟合,获取运输航空征候万时率的线性部分... 为准确预测中国运输航空征候万时率,提出了一种将时间序列模型和神经网络模型组合的预测方法。首先,利用2008年1月—2020年12月的运输航空征候万时率数据建立Prophet模型,使用RStudio软件进行模型拟合,获取运输航空征候万时率的线性部分;其次,利用长短期记忆网络(Long Short-Term Memory,LSTM)建模,获取运输航空征候万时率的非线性部分;最后,利用方差倒数法建立Prophet-LSTM组合模型,使用建立的组合模型对2021年1—12月运输航空征候万时率进行预测,将预测结果与实际值进行对比验证。结果表明,Prophet-LSTM组合模型的EMA、EMAP、ERMS分别为0.0973、16.1285%、0.1287。相较于已有的自回归移动平均(Auto Regression Integrated Moving Average,ARIMA)+反向传播神经网络(Back Propagation Neural Network,BPNN)组合模型和GM(1,1)+ARIMA+LSTM组合模型,Prophet-LSTM组合模型的EMA、EMAP、ERMS分别减小了0.0259、10.4874百分点、0.0143和0.0128、2.0599百分点、0.0086,验证了Prophet-LSTM组合模型的预测精度更高,性能更优良。 展开更多
关键词 安全社会工程 运输航空征候 Prophet模型 长短期记忆网络(LSTM)模型 组合预测模型
下载PDF
N-Calculator与NUFER耦合模型和组合预测法在食物氮足迹研究中的应用
6
作者 乔森 赵骏廷 郑洪波 《安全与环境学报》 CAS CSCD 北大核心 2024年第2期778-786,共9页
为改善传统N-Calculator模型的局限性,加强食物氮足迹核算结果与环境影响的联系,提高活性氮管理预见性,将N-Calculator模型与食物系统养分流动(Nutrient Flows in Food Chains,Environment and Resources Use,NUFER)模型进行耦合,以估... 为改善传统N-Calculator模型的局限性,加强食物氮足迹核算结果与环境影响的联系,提高活性氮管理预见性,将N-Calculator模型与食物系统养分流动(Nutrient Flows in Food Chains,Environment and Resources Use,NUFER)模型进行耦合,以估算我国2001—2020年人均食物氮足迹,建立组合预测体系。结果显示:2001—2020年,我国人均食物氮足迹由16.04 kg N/a增至18.95 kg N/a;全国食物氮足迹由20.47 Mt N/a增至26.76 Mt N/a;居民饮食结构正由以植物源食物为主的低氮消费模式转向以动物源食物为主的高氮消费模式;食物生产过程产生的活性氮的最终归宿为大气(64.3%)、水体和深层土壤(35.7%);我国食物氮足迹与人均可支配收入、城市化率、动物源食物消费氮占比呈正相关性,与恩格尔系数呈负相关性;未来10 a我国人均食物氮足迹呈增长趋势,预测结果显示年均增幅为0.16 kg N/a。 展开更多
关键词 环境学 食物氮足迹 活性氮 N-Calculator模型 NUFER模型 组合预测模型
下载PDF
基于CEEMDAN-GRU组合模型的碳排放交易价格预测研究
7
作者 傅魁 钱素彬 徐尚英 《武汉理工大学学报(信息与管理工程版)》 CAS 2024年第1期62-66,共5页
准确的碳价格预测有助于监管部门观测碳交易市场运行状况及投资者进行科学决策,对实现碳达峰和碳中和具有重要作用。但碳价序列具有非线性、非平稳性和高噪声的特性,很难对其进行准确预测。将完全自适应噪声集合经验模态分解(CEEMDAN)... 准确的碳价格预测有助于监管部门观测碳交易市场运行状况及投资者进行科学决策,对实现碳达峰和碳中和具有重要作用。但碳价序列具有非线性、非平稳性和高噪声的特性,很难对其进行准确预测。将完全自适应噪声集合经验模态分解(CEEMDAN)方法与门控循环单元(GRU)相结合,构建一个碳排放交易价格预测模型。该模型基于分解、集成思想,利用CEEMDAN将原始碳价序列分解,获得不同频率的本征模函数(IMF)和残差序列,使用GRU神经网络分别为各子序列建立预测模型,最后集成预测结果得到碳价预测值。以湖北省碳交易市场的日度成交价为例进行实证分析,结果表明:相较于其他5种基准模型,CEEMDAN-GRU模型具有更小的预测误差和更高的拟合优度,在碳价格预测上具有一定的优势。 展开更多
关键词 碳价格预测 组合模型 CEEMDAN GRU 机器学习
下载PDF
配电网负荷预测中信号分解和预测模型组合的双层优化策略
8
作者 张扬 《智慧电力》 北大核心 2024年第9期104-111,共8页
负荷时间序列的波动性和非线性特征的加剧对负荷预测方法提出了更高的要求,而常规组合预测方法针对海量负荷数据存在应用局限性问题。为此,提出了配电网负荷预测中时序分解方法和预测模型组合的双层优化策略。首先针对某一负荷预测数据... 负荷时间序列的波动性和非线性特征的加剧对负荷预测方法提出了更高的要求,而常规组合预测方法针对海量负荷数据存在应用局限性问题。为此,提出了配电网负荷预测中时序分解方法和预测模型组合的双层优化策略。首先针对某一负荷预测数据,在时序信号分解层配置权重,以负荷均方根误差最小寻优各分解方法的权重系数,进而获得各时序信号分解方法的最优组合;在此基础上,在预测模型层进行组合方案寻优,通过配置权重系数以获得各预测模型的最优组合,进一步提升负荷预测的精度。仿真结果表明,所提策略可根据预测对象的特征优化组合各信号分解方法和预测模型,降低了配电网负荷序列的非平稳性对预测精度的影响。 展开更多
关键词 配电网 预测模型 时序信号分解 双层优化 组合预测
下载PDF
SARIMA-GRU组合模型的水位预测
9
作者 曹寒问 陈九江 李小玲 《南昌工程学院学报》 CAS 2024年第3期8-12,共5页
相较于传统的单一模型,组合模型在一定条件下具有更优的预测精度。为验证组合模型是否有利于提高模型的预测精度,本文以长江中游支流澧水石龟山水电站的水位数据为基础,建立SARIMA模型和GRU神经网络模型,并将这两种模型基于方差倒数法和... 相较于传统的单一模型,组合模型在一定条件下具有更优的预测精度。为验证组合模型是否有利于提高模型的预测精度,本文以长江中游支流澧水石龟山水电站的水位数据为基础,建立SARIMA模型和GRU神经网络模型,并将这两种模型基于方差倒数法和IOWA算子进行组合,最后比较单一模型和组合模型在该水位数据集上的预测精度差异。结果表明,适当的组合方式有利于提高模型预测精度,基于IOWA算子的组合模型具优良的预测性能。 展开更多
关键词 SARIMA GRU神经网络 水位预测 组合模型
下载PDF
基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型
10
作者 唐非 《太阳能学报》 EI CAS CSCD 北大核心 2024年第7期735-744,共10页
针对风电场短期风速预测准确度不高的问题,提出一种基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型。首先,为突出短期风速的局部特征并降低建模难度,通过互补集成经验模态分解算法将短期风速分解为若干个稳定分量。然后... 针对风电场短期风速预测准确度不高的问题,提出一种基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型。首先,为突出短期风速的局部特征并降低建模难度,通过互补集成经验模态分解算法将短期风速分解为若干个稳定分量。然后,利用信息熵和近似熵来判定各分量的复杂度,高复杂度分量选择最小二乘支持向量机、低复杂度分量选择随机配置网络作为对应的预测模型。利用Stacking算法对每个模型的预测值进行融合,使预测精度得到提升。最后,通过一组实际的短期风速数据作为研究对象,将提出的预测模型应用于其预测。对比结果表明,所提预测模型可提高短期风速的预测精度。 展开更多
关键词 风能 短期风速 组合预测 互补集成经验模态分解 模型 Stacking融合
下载PDF
基于高频组合片段-基因表达式编程算法的轨道交通地面沉降预测模型
11
作者 胡珉 卢孟栋 《城市轨道交通研究》 北大核心 2024年第8期206-210,共5页
[目的]地面沉降预测和控制是轨道交通盾构法隧道施工中最为关注的问题之一。为了解决现有地面沉降预测和控制中存在的模型表达过于复杂且缺乏解释性的问题,需要一种既简洁清晰,又能够描述复杂问题的可解释模型,GEP(基因表达式编程)算法... [目的]地面沉降预测和控制是轨道交通盾构法隧道施工中最为关注的问题之一。为了解决现有地面沉降预测和控制中存在的模型表达过于复杂且缺乏解释性的问题,需要一种既简洁清晰,又能够描述复杂问题的可解释模型,GEP(基因表达式编程)算法提供了这种可能性,因此需对基于HFS(高频组合片段)-GEP算法的轨道交通地面沉降预测模型进行深入研究。[方法]以杭绍城际铁路某区段盾构隧道工程为依托,选取盾构施工过程中的土舱压力、刀盘扭矩、刀盘转速、推进速度、总推力、隧道埋深及盾尾注浆量等参数作为关键输入型施工参数,地面沉降作为输出型施工参数,通过备选公式集筛选以及HFS选取,建立基于HFS-GEP算法的轨道交通地面沉降预测模型。利用该模型对第180环—第210环区段的关键施工参数进行优化调整,分析盾构施工参数变化对地面最终沉降的影响效果。[结果及结论]基于HFS-GEP算法的地面沉降预测模型可以反映盾构施工参数与地面最终沉降的显式关系;相较于传统GEP算法的地面沉降预测模型,该模型准确度更高,结构更为简洁,且收敛速度更快。通过对盾构关键施工参数进行优化调整,该模型可将第180环—第210环区段的最终沉降量控制在10 mm以内。 展开更多
关键词 轨道交通 地面沉降预测模型 高频组合片段 基因表达式编程算法
下载PDF
基于ARIMA-GRNN组合模型的传染病发病率预测 被引量:36
12
作者 严薇荣 徐勇 +3 位作者 杨小兵 张惠娟 施侣元 周宜开 《中国卫生统计》 CSCD 北大核心 2008年第1期82-83,共2页
关键词 组合模型 发病率 传染病 预测 非线性映射 ARIMA模型 时间序列模型 神经网络
下载PDF
基于CEEMD-GRNN组合模型的月径流预测方法 被引量:22
13
作者 赵雪花 桑宇婷 祝雪萍 《人民长江》 北大核心 2019年第4期117-123,141,共8页
针对径流序列的噪声因素与非线性特性,采用互补集合经验模态分解法(Complete Ensemble Empirical Mode Decomposition, CEEMD)与广义回归神经网络(Generalized Regression Neural Networks, GRNN)的组合模型,对汾河上游上静游站、汾河... 针对径流序列的噪声因素与非线性特性,采用互补集合经验模态分解法(Complete Ensemble Empirical Mode Decomposition, CEEMD)与广义回归神经网络(Generalized Regression Neural Networks, GRNN)的组合模型,对汾河上游上静游站、汾河水库站、寨上站、兰村站1958~2000年的月径流序列进行实例研究,探究3种不同建模方式下的组合模型对预测精度的影响,其中组合模型1使用加权平均集成法将各分量预测结果相加,组合模型2去除高频分量后再使用加权平均集成法将剩余分量预测结果相加,组合模型3去除高频分量后将剩余分量预测结果直接相加;再将组合模型与单一GRNN模型进行对比。结果表明:各模型的确定性系数(NS)均大于0.5,预测结果均具有可信度;不同的月径流资料适用不同的建模方法,对于极差较小的月径流序列,组合模型1预测效果最好,与另外两种组合模型及单一模型相比,平均绝对误差(MAE)、平均绝对百分比误差(MAPE)、均方根误差(RMSE)分别平均减少26%,17%,23%;对于极差较大的径流序列,组合模型2预测效果最好,与另外两种组合模型及单一模型相比,MAE,MAPE,RMSE分别平均减少30%,28%,33%。组合模型2预测误差总小于组合模型3,即加权平均集成法对提高预测精度有一定作用。三种建模过程的CEEMD-GRNN组合模型预测误差均比单一GRNN模型小,说明组合模型较单一模型更适用于月径流预测。 展开更多
关键词 月径流预测 CEEMD模型 grnn模型 加权平均集成法 汾河上游
下载PDF
基于VMD与组合模型的大气污染物浓度预测方法
14
作者 邵玉祥 冯春生 +2 位作者 程俊杰 刘秋梦 蒲思涵 《软件导刊》 2024年第4期8-13,共6页
为提高大气污染物浓度的预测准确性,提出一种基于变分模态分解与组合模型的预测方法。首先通过变分模态分解将目标监测点的历史污染物浓度数据重构为多变量时序数据,根据区域内监测点之间的地理关系构建时空序列数据;然后将处理好的数... 为提高大气污染物浓度的预测准确性,提出一种基于变分模态分解与组合模型的预测方法。首先通过变分模态分解将目标监测点的历史污染物浓度数据重构为多变量时序数据,根据区域内监测点之间的地理关系构建时空序列数据;然后将处理好的数据输入LSTM与ConvLSTM的组合模型中,同时提取时间与空间特征并输出预测结果。针对武汉市PM2.5、SO2、NO23种污染物历史浓度数据进行实验,所提预测方法在MAE、RMSE和MAPE3个指标上均表现最佳,明显优于其他模型。此外,在时间尺度增加的情况下,该方法相较其他模型仍保持最高的预测精度。该方法能够充分捕捉局部特征,在综合考虑时间与空间特征方面具备显著优势,为大气污染物浓度的准确预测提供了一种可行途径。 展开更多
关键词 大气污染物 浓度预测 变分模态分解 组合模型 LSTM ConvLSTM
下载PDF
基于离散Hopfield模式识别样本的GRNN非线性组合短期风速预测模型 被引量:18
15
作者 陈烨 高亚静 张建成 《电力自动化设备》 EI CSCD 北大核心 2015年第8期131-136,共6页
利用实时风速数据,建立基于离散Hopfield模式识别样本的广义回归神经网络(GRNN)非线性组合预测模型。在风速数据样本集经二维小波阈值去噪处理后,基于离散Hopfield识别历史数据中与待预测样本最相似的数据,并作为训练样本;将支持向量机... 利用实时风速数据,建立基于离散Hopfield模式识别样本的广义回归神经网络(GRNN)非线性组合预测模型。在风速数据样本集经二维小波阈值去噪处理后,基于离散Hopfield识别历史数据中与待预测样本最相似的数据,并作为训练样本;将支持向量机、BP神经网络和Elman神经网络分别进行单项预测的结果作为输入向量,经GRNN进行非线性组合预测。采用某风电场的实际风速数据进行预测,结果验证了该预测模型的正确性和有效性。 展开更多
关键词 风电 二维小波阈值去噪方法 离散HOPFIELD 模式识别 广义回归神经网络 非线性组合预测 模型 去噪 支持向量机 神经网络 预测
下载PDF
GRNN组合预测模型对辽宁省及部分地区肾综合征出血热发病率的预测研究 被引量:6
16
作者 吴伟 郭军巧 周宝森 《中国媒介生物学及控制杂志》 CAS CSCD 北大核心 2008年第1期44-48,共5页
目的探讨广义回归神经网络(GRNN)组合预测模型在肾综合征出血热(HFRS)发病率预测上的优势及应用前景。方法利用1990-2001年辽宁省、丹东市、沈阳市和朝阳市HFRS发病率分别建立GM(1,1)灰色预测模型和求和自回归滑动平均(ARIMA)模型,把2... 目的探讨广义回归神经网络(GRNN)组合预测模型在肾综合征出血热(HFRS)发病率预测上的优势及应用前景。方法利用1990-2001年辽宁省、丹东市、沈阳市和朝阳市HFRS发病率分别建立GM(1,1)灰色预测模型和求和自回归滑动平均(ARIMA)模型,把2个模型的预测值作为GRNN的输入,实测值作为网络的输出,对样本进行训练和预测,并对3个模型的预测效果进行比较。结果针对辽宁省HFRS发病率建立的GM(1,1)模型、ARIMA模型和GRNN组合预测模型的平均误差率(MER)分别为13.5143%、25.0814%和5.5755%;R2分别为0.8961、0.6997和0.9837。针对丹东市HFRS发病率建立模型的MER分别为19.7329%、20.6275%和14.0789%;R2分别为0.8112、0.7628和0.8750。针对沈阳市HFRS发病率建立模型的MER分别为15.1421%、18.0584%和14.3592%;R2分别为0.8757、0.7889和0.8585。针对朝阳市HFRS发病率建立模型的MER分别为51.5090%、28.6593%和28.5927%;R2分别为0.7863、0.8291和0.7753。GRNN组合预测模型对于辽宁省和丹东市的HFRS发病率预测效果好于2个单一模型;针对沈阳市所建立的HFRS发病率预测模型,GRNN组合预测模型和GM(1,1)模型相当,ARIMA模型最差。朝阳市的HFRS发病率预测模型不适合用上述方法建立。结论GRNN组合预测模型充分体现了它在小样本预测中的优势,预测效果优于GM(1,1)模型和ARIMA模型,对解决时间序列类型的HFRS发病率等资料有很好的实用价值。 展开更多
关键词 肾综合征出血热 广义回归神经网络 GM(1 1)模型 求和自回归滑动平均模型 组合预测
下载PDF
基于二次分解和乌鸦搜索算法优化组合模型的超短期风速预测 被引量:1
17
作者 邱文智 张文煜 +2 位作者 郭振海 赵晶 马可可 《太阳能学报》 EI CAS CSCD 北大核心 2024年第3期73-82,共10页
针对风速的波动性和随机性等特点,提出一种基于二次分解和乌鸦搜索算法优化组合模型的超短期风速预测方法。该方法的基本思路是构造基于变分模态分解、样本熵和奇异谱分析的二次分解的方法,将原始风速序列分解为不同的子序列,并对这些... 针对风速的波动性和随机性等特点,提出一种基于二次分解和乌鸦搜索算法优化组合模型的超短期风速预测方法。该方法的基本思路是构造基于变分模态分解、样本熵和奇异谱分析的二次分解的方法,将原始风速序列分解为不同的子序列,并对这些子序列分别建立预测模型,最后重构。对变分模态分解的子序列建立基于长短时记忆网络的深度学习模型预测,而残差序列进行二次分解后的子序列建立乌鸦搜索算法优化的组合预测模型预测。最后,对子序列进行重构并得到最终的预测结果。使用实际的风速观测资料开展模拟实验,结果表明:在3个风电场中,所提模型与其他模型相比平均相对误差分别提升了30.07%、37.56%和37.40%,验证了混合模型在超短期风速预测中的有效性和稳定性,以及在不同数据集上的泛化性能。 展开更多
关键词 风速 预测 长短时记忆 二次分解 乌鸦搜索算法 组合预测模型
下载PDF
基于SARIMA-LSTM组合模型的油气集输系统能耗预测 被引量:1
18
作者 贺思宸 陈由旺 +4 位作者 朱英如 侯磊 刘珈铨 满建峰 张鑫儒 《油气田地面工程》 2024年第7期82-89,共8页
油气集输是油田开发生产过程的重要阶段,准确预测油气集输系统能耗能够为生产调度和能源管控提供支持。为提高油气集输系统能耗预测的准确性,针对其线性和非线性特征,综合考虑数理统计和机器学习预测方法的优缺点,提出一种基于季节性差... 油气集输是油田开发生产过程的重要阶段,准确预测油气集输系统能耗能够为生产调度和能源管控提供支持。为提高油气集输系统能耗预测的准确性,针对其线性和非线性特征,综合考虑数理统计和机器学习预测方法的优缺点,提出一种基于季节性差分自回归积分滑动平均(SARIMA)和长短期记忆(LSTM)神经网络的组合预测模型。根据S油田M环状掺水油气集输系统6年的运行数据,设计组合模型的网络结构,训练组合模型的网络参数。研究结果表明:与传统的SARIMA模型和LSTM神经网络相比,组合模型对三个能耗指标的预测准确性显著提高,可为企业调整生产运行方案和优化能源管控方案提供指导和数据支持。 展开更多
关键词 油气集输系统 能耗预测 SARIMA模型 LSTM神经网络 组合模型
下载PDF
基于SSA-LMD-GM的大坝变形组合预测模型 被引量:1
19
作者 李旭 冯晓 +1 位作者 刘宇豪 潘国兵 《工程勘察》 2024年第1期45-49,共5页
为提高大坝变形预测精度,针对大坝原始监测信号中的噪声,以及其非平稳性、非线性等特点,引入奇异谱分析(SSA)和局部均值分解(LMD)方法,提出SSA-LMD-GM模型。采用奇异谱分析(SSA)对原始监测信号进行去噪处理,为充分提取大坝形变信息特征... 为提高大坝变形预测精度,针对大坝原始监测信号中的噪声,以及其非平稳性、非线性等特点,引入奇异谱分析(SSA)和局部均值分解(LMD)方法,提出SSA-LMD-GM模型。采用奇异谱分析(SSA)对原始监测信号进行去噪处理,为充分提取大坝形变信息特征,利用局部均值分解(LMD)对去噪后的监测信号进行分解。针对乘积函数(PF)分量的特征采用合适的模型预测分析,剩下余项则采用GM(1,1)模型。利用实际工程案例进行检验,结果表明,相较于其他模型,SSA-LMD-GM模型预测精度和拟合精度更加优秀,能较好地预测大坝变形趋势,具有一定的应用价值。 展开更多
关键词 大坝变形监测 奇异谱分析 局部均值分解 GM(1 1)模型 组合预测模型
下载PDF
融合小波分析的GA-BP模型呼兰河流域年径流预测
20
作者 李杰 孙颖娜 曹越 《云南水力发电》 2025年第1期9-13,共5页
为了提高径流预测的精度,提出了小波分析与遗传算法优化BP神经网络相结合的预测模型。采用呼兰河流域兰西水文站1956-2019的实测年径流序列进行预测和测试,选取均方根误差(RMSE)、拟合系数(R2)和平均相对误差(MAPE)对预测结果进行对比评... 为了提高径流预测的精度,提出了小波分析与遗传算法优化BP神经网络相结合的预测模型。采用呼兰河流域兰西水文站1956-2019的实测年径流序列进行预测和测试,选取均方根误差(RMSE)、拟合系数(R2)和平均相对误差(MAPE)对预测结果进行对比评价,与其GA-BP模型和BP模型进行对比,有着更高的精度和更低的误差。为呼兰河流域径流的预测提供了一条新的方法。 展开更多
关键词 呼兰河流域 小波分析 径流预测 GA-BP组合模型
下载PDF
上一页 1 2 129 下一页 到第
使用帮助 返回顶部