为了有效解决脉冲噪声环境下的稀疏系统辨识(Sparse system identification,SSI)问题,以l1-范数为约束构建稀疏递归互相关熵准则(Recursive maximum correntropy criterion,RMCC)算法来解决脉冲噪声对于辨识性能的影响。结合带遗忘算子...为了有效解决脉冲噪声环境下的稀疏系统辨识(Sparse system identification,SSI)问题,以l1-范数为约束构建稀疏递归互相关熵准则(Recursive maximum correntropy criterion,RMCC)算法来解决脉冲噪声对于辨识性能的影响。结合带遗忘算子的互相关熵准则和l1-范数作为代价函数,推导出一种递归形式的算法,其相对于传统的最大相关熵算法具有快的收敛速度及小的稳态误差。仿真实验结果表明:该算法对于脉冲噪声干扰环境下的SSI问题具有强的鲁棒性。展开更多
为了避免图像数据向量化后的维数灾难问题,以及增强对野值(outliers)及噪声的鲁棒性,该文提出一种基于L1-范数的2维线性判别分析(L1-norm-based Two-Dimensional Linear Discriminant Analysis,2DLDA-L1)降维方法。它充分利用L1-范数对...为了避免图像数据向量化后的维数灾难问题,以及增强对野值(outliers)及噪声的鲁棒性,该文提出一种基于L1-范数的2维线性判别分析(L1-norm-based Two-Dimensional Linear Discriminant Analysis,2DLDA-L1)降维方法。它充分利用L1-范数对野值及噪声的强鲁棒性,并且直接在图像矩阵上进行投影降维。该文还提出一种快速迭代优化算法,并给出了其单调收敛到局部最优的证明。在多个图像数据库上的实验验证了该方法的鲁棒性与高效性。展开更多
块主成份分析(block principal component analysis,BPCA)是一种重要的子空间学习方法,能充分利用图像矩阵的部分关联.基于L1-范数的BPCA是近年来发展起来的鲁棒降维的有效方法.本研究提出了一种新的鲁棒稀疏BPCA方法,称之为BPCAL1-S....块主成份分析(block principal component analysis,BPCA)是一种重要的子空间学习方法,能充分利用图像矩阵的部分关联.基于L1-范数的BPCA是近年来发展起来的鲁棒降维的有效方法.本研究提出了一种新的鲁棒稀疏BPCA方法,称之为BPCAL1-S.该方法相对于传统的基于L2-范数的PCA对噪声更加鲁棒.为了建立稀疏模型,优化过程中引入弹性网,联合使用Lasso与Ridge惩罚因子进行约束.提出了一种贪心算法逐个提取特征向量,对迭代过程的收敛性做了理论证明.将BPCAL1-S应用于图像分类与图像重构,实验结果验证了该方法的有效性.展开更多
人脸识别是统计模式识别领域中经典的分类问题,为了提高算法的分类性能,优化技术被广泛应用到人脸识别领域。提出基于稀疏恢复的l1范数凸包分类算法,将原始训练数据集进行低秩恢复,利用恢复出的低秩矩阵和误差矩阵构成新训练集字典建立...人脸识别是统计模式识别领域中经典的分类问题,为了提高算法的分类性能,优化技术被广泛应用到人脸识别领域。提出基于稀疏恢复的l1范数凸包分类算法,将原始训练数据集进行低秩恢复,利用恢复出的低秩矩阵和误差矩阵构成新训练集字典建立各类训练样本凸包模型,并在l1范数意义下,计算观测样本与各类凸包模型差值,用所得差值等价观测样本到各类样本凸包的距离,将距离最小的一类视为判别输出类。在ORL(Olivetti Research Lab)标准人脸图像库上进行实验分析,实验证明基于稀疏恢复的l1范数凸包分类算法具有较高的识别效率。展开更多
文摘为了有效解决脉冲噪声环境下的稀疏系统辨识(Sparse system identification,SSI)问题,以l1-范数为约束构建稀疏递归互相关熵准则(Recursive maximum correntropy criterion,RMCC)算法来解决脉冲噪声对于辨识性能的影响。结合带遗忘算子的互相关熵准则和l1-范数作为代价函数,推导出一种递归形式的算法,其相对于传统的最大相关熵算法具有快的收敛速度及小的稳态误差。仿真实验结果表明:该算法对于脉冲噪声干扰环境下的SSI问题具有强的鲁棒性。
文摘为了避免图像数据向量化后的维数灾难问题,以及增强对野值(outliers)及噪声的鲁棒性,该文提出一种基于L1-范数的2维线性判别分析(L1-norm-based Two-Dimensional Linear Discriminant Analysis,2DLDA-L1)降维方法。它充分利用L1-范数对野值及噪声的强鲁棒性,并且直接在图像矩阵上进行投影降维。该文还提出一种快速迭代优化算法,并给出了其单调收敛到局部最优的证明。在多个图像数据库上的实验验证了该方法的鲁棒性与高效性。
基金Foundation item:Supported by the National Natural Science Foundation of China(61375118)the Research Foundation for Young Teachers in Anhui University of Technology(QZ201516)the Key Natural Science Foundation of Anhui Province(KJ2015ZD44)
文摘块主成份分析(block principal component analysis,BPCA)是一种重要的子空间学习方法,能充分利用图像矩阵的部分关联.基于L1-范数的BPCA是近年来发展起来的鲁棒降维的有效方法.本研究提出了一种新的鲁棒稀疏BPCA方法,称之为BPCAL1-S.该方法相对于传统的基于L2-范数的PCA对噪声更加鲁棒.为了建立稀疏模型,优化过程中引入弹性网,联合使用Lasso与Ridge惩罚因子进行约束.提出了一种贪心算法逐个提取特征向量,对迭代过程的收敛性做了理论证明.将BPCAL1-S应用于图像分类与图像重构,实验结果验证了该方法的有效性.
文摘人脸识别是统计模式识别领域中经典的分类问题,为了提高算法的分类性能,优化技术被广泛应用到人脸识别领域。提出基于稀疏恢复的l1范数凸包分类算法,将原始训练数据集进行低秩恢复,利用恢复出的低秩矩阵和误差矩阵构成新训练集字典建立各类训练样本凸包模型,并在l1范数意义下,计算观测样本与各类凸包模型差值,用所得差值等价观测样本到各类样本凸包的距离,将距离最小的一类视为判别输出类。在ORL(Olivetti Research Lab)标准人脸图像库上进行实验分析,实验证明基于稀疏恢复的l1范数凸包分类算法具有较高的识别效率。