The variation of electrical demand above its base value is its common characteristic. The weather dependent variation of demand, especially where the weather is severe in nature, requires a significant reserve margin ...The variation of electrical demand above its base value is its common characteristic. The weather dependent variation of demand, especially where the weather is severe in nature, requires a significant reserve margin of the generation system. The evaluation of the weather dependent component of the electric demand is the basic tool for the planning of the reserve margin. This paper evaluates the weather dependent portion of the load of BPS (Bangladesh power system). The evaluation of the weather dependent portion of the demand is based on the EMD (empirical mode decomposition) technique.展开更多
The periodic or quasi-periodic orbits around collinear Lagrange points present many properties that are advantageous for space missions. These Lagrange point orbits are exponentially unstable. On the basis of an analy...The periodic or quasi-periodic orbits around collinear Lagrange points present many properties that are advantageous for space missions. These Lagrange point orbits are exponentially unstable. On the basis of an analytical method, an orbit control strategy that is designed to eliminate the dominant unstable components of Lagrange point orbits is developed. The proposed strategy enables the derivation of the analytical expression of nonlinear control force. The control parameter of this strategy can be arbitrarily selected provided that the parameter is considerably lower than the negative eigenvalue of motion equations, and that the energy required keeps the same order of magnitude. The periodic or quasi-periodic orbit of controlled equations remains near the periodic or quasi-periodic orbit of uncontrolled equations.展开更多
An exact approach is presented to compute the three-dimensional(3D) acoustic field in a homogeneous wedge-shaped ocean with perfectly reflecting boundaries. This approach applies the Fourier synthesis technique, which...An exact approach is presented to compute the three-dimensional(3D) acoustic field in a homogeneous wedge-shaped ocean with perfectly reflecting boundaries. This approach applies the Fourier synthesis technique, which reduces a 3D point-source ideal wedge problem into a sequence of two-dimensional(2D) line-source ideal wedge problems, whose analytical solution is well established. A comparison of numerical efficiency is provided between this solution and the solution proposed by Buckingham,which is obtained by a sequence of integral transforms. The details of numerical implementation of these two solutions are also given. To validate the present approach and at the same time compare numerical efficiency between this approach and Buckingham's analytical solution, two numerical examples are considered. One is the Acoustical Society of America(ASA) benchmark wedge problem and the other is a wide-angle wedge problem. Numerical results indicate that the present approach is efficient and capable of providing accurate 3D acoustic field results for arbitrary receiver locations, and hence can serve as a benchmark model for sound propagation in a homogeneous wedge-shaped ocean.展开更多
文摘The variation of electrical demand above its base value is its common characteristic. The weather dependent variation of demand, especially where the weather is severe in nature, requires a significant reserve margin of the generation system. The evaluation of the weather dependent component of the electric demand is the basic tool for the planning of the reserve margin. This paper evaluates the weather dependent portion of the load of BPS (Bangladesh power system). The evaluation of the weather dependent portion of the demand is based on the EMD (empirical mode decomposition) technique.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10832004 and 11102006)the Fan-Zhou Foundation (Grant No. 20110502)
文摘The periodic or quasi-periodic orbits around collinear Lagrange points present many properties that are advantageous for space missions. These Lagrange point orbits are exponentially unstable. On the basis of an analytical method, an orbit control strategy that is designed to eliminate the dominant unstable components of Lagrange point orbits is developed. The proposed strategy enables the derivation of the analytical expression of nonlinear control force. The control parameter of this strategy can be arbitrarily selected provided that the parameter is considerably lower than the negative eigenvalue of motion equations, and that the energy required keeps the same order of magnitude. The periodic or quasi-periodic orbit of controlled equations remains near the periodic or quasi-periodic orbit of uncontrolled equations.
基金supported by the National Natural Science Foundation of China(Grant No.11125420)the Knowledge Innovation Program of the Chinese Academy of Sciences,and the Doctoral Fund of Shandong Province(Grant No.BS2012HZ015)
文摘An exact approach is presented to compute the three-dimensional(3D) acoustic field in a homogeneous wedge-shaped ocean with perfectly reflecting boundaries. This approach applies the Fourier synthesis technique, which reduces a 3D point-source ideal wedge problem into a sequence of two-dimensional(2D) line-source ideal wedge problems, whose analytical solution is well established. A comparison of numerical efficiency is provided between this solution and the solution proposed by Buckingham,which is obtained by a sequence of integral transforms. The details of numerical implementation of these two solutions are also given. To validate the present approach and at the same time compare numerical efficiency between this approach and Buckingham's analytical solution, two numerical examples are considered. One is the Acoustical Society of America(ASA) benchmark wedge problem and the other is a wide-angle wedge problem. Numerical results indicate that the present approach is efficient and capable of providing accurate 3D acoustic field results for arbitrary receiver locations, and hence can serve as a benchmark model for sound propagation in a homogeneous wedge-shaped ocean.