期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基函数自适应选择的预测函数控制方法在混凝投加中的应用 被引量:2
1
作者 张伯立 章如峰 赵寅军 《自动化博览》 2013年第9期128-131,共4页
传统预测函数控制算法的基函数是固定的,在控制环境不稳定的情况下控制品质不理想,本文提出一种通过对基函数的自适应选择来改善控制品质。本文根据过程输出值与期望值的误差来选择基函数,将全体误差分为几个区域,每个区域分别对应一个... 传统预测函数控制算法的基函数是固定的,在控制环境不稳定的情况下控制品质不理想,本文提出一种通过对基函数的自适应选择来改善控制品质。本文根据过程输出值与期望值的误差来选择基函数,将全体误差分为几个区域,每个区域分别对应一个基函数,通过计算误差落选区域来选择对应的基函数。针对混凝投药过程的时滞原因,本文利用软测量方法建立一个混凝投药模型,应用该模型预测过程的输出。Matlab仿真表明此算法具有更好的平稳性和快速响应能力,比传统预测函数控制算法具有更好的控制品质。 展开更多
关键词 函数自适应选择 BP投药模型 预测函数控制
下载PDF
基于改进贝叶斯压缩感知的正交频分复用系统信道估计 被引量:2
2
作者 常苗苗 周金和 《计算机应用与软件》 CSCD 2016年第2期98-101,共4页
针对正交频分复用(OFDM)系统利用传统压缩感知算法进行信道估计需要已知信道稀疏度等消息,且算法复杂度高,重构时间长的问题,提出改进贝叶斯压缩感知算法进行OFDM信道估计。该算法将正交频分复用系统的信道估计转化为贝叶斯压缩感知重... 针对正交频分复用(OFDM)系统利用传统压缩感知算法进行信道估计需要已知信道稀疏度等消息,且算法复杂度高,重构时间长的问题,提出改进贝叶斯压缩感知算法进行OFDM信道估计。该算法将正交频分复用系统的信道估计转化为贝叶斯压缩感知重构问题,在不需要预先知道信道稀疏度信息的情况下,通过优化重构过程中的基函数选择方法,将基函数从1个开始逐渐增加,而不是删除,进而得到信道估计值以及误差范围,使该算法具有更快的收敛速度。仿真结果表明,与传统信道估计算法相比,该算法不需要信道的稀疏度信息,并且重构精度更高,在低信噪比的情况下估计效果更好,提高了运算速度,降低了复杂度。 展开更多
关键词 改进贝叶斯压缩感知 信道估计 正交频分复用 基函数选择
下载PDF
RBF-based cluster-head selection for wireless sensor networks 被引量:2
3
作者 朱晓荣 沈连丰 《Journal of Southeast University(English Edition)》 EI CAS 2006年第4期451-455,共5页
The radial basis function (RBF), a kind of neural networks algorithm, is adopted to select clusterheads. It has many advantages such as simple parallel distributed computation, distributed storage, and fast learning... The radial basis function (RBF), a kind of neural networks algorithm, is adopted to select clusterheads. It has many advantages such as simple parallel distributed computation, distributed storage, and fast learning. Four factors related to a node becoming a cluster-head are drawn by analysis, which are energy ( energy available in each node), number (the number of neighboring nodes), centrality ( a value to classify the nodes based on the proximity how central the node is to the cluster), and location (the distance between the base station and the node). The factors are as input variables of neural networks and the output variable is suitability that is the degree of a node becoming a cluster head. A group of cluster-heads are selected according to the size of network. Then the base station broadcasts a message containing the list of cluster-heads' IDs to all nodes. After that, each cluster-head announces its new status to all its neighbors and sets up a new cluster. If a node around it receives the message, it registers itself to be a member of the cluster. After identifying all the members, the cluster-head manages them and carries out data aggregation in each cluster. Thus data flowing in the network decreases and energy consumption of nodes decreases accordingly. Experimental results show that, compared with other algorithms, the proposed algorithm can significantly increase the lifetime of the sensor network. 展开更多
关键词 sensor networks radial basis function cluster-head selection
下载PDF
Optimal choice of parameters for particle swarm optimization 被引量:14
4
作者 张丽平 俞欢军 胡上序 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第6期528-534,共7页
The constriction factor method (CFM) is a new variation of the basic particle swarm optimization (PSO), which has relatively better convergent nature. The effects of the major parameters on CFM were systematically inv... The constriction factor method (CFM) is a new variation of the basic particle swarm optimization (PSO), which has relatively better convergent nature. The effects of the major parameters on CFM were systematically investigated based on some benchmark functions. The constriction factor, velocity constraint, and population size all have significant impact on the per- formance of CFM for PSO. The constriction factor and velocity constraint have optimal values in practical application, and im- proper choice of these factors will lead to bad results. Increasing population size can improve the solution quality, although the computing time will be longer. The characteristics of CFM parameters are described and guidelines for determining parameter values are given in this paper. 展开更多
关键词 Particle swarm optimization (PSO) Constriction factor method (CFM) Parameter selection
下载PDF
Multistatic radar analysis based on ambiguity function and Cramér-Rao lower bounds
5
作者 雷鹏正 黄晓涛 《Journal of Central South University》 SCIE EI CAS 2014年第8期3092-3097,共6页
The primary goal of this work is to characterize the impact of weighting selection strategy and multistatic geometry on the multistatic radar performance. With the relationship between the multistatic ambiguity functi... The primary goal of this work is to characterize the impact of weighting selection strategy and multistatic geometry on the multistatic radar performance. With the relationship between the multistatic ambiguity function (AF) and the multistatie Cram6r-Rao lower bound (CRLB), the problem of calculating the multistatic AF and the multistatic CRLB as a performance metric for multistatic radar system is studied. Exactly, based on the proper selection of the system parameters, the multistatic radar performance can be significantly improved. The simulation results illustrate that the multistatic AF and the multistatic CRLB can serve as guidelines for future multistatic fusion rule development and multistatic radars deployment. 展开更多
关键词 ambiguity function (AF) Cram6r-Rao lower bound (CRLB) multistatic radar
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部