期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种改进的无人工变量单纯形算法 被引量:1
1
作者 高培旺 《井冈山大学学报(自然科学版)》 2016年第5期58-62,共5页
对Arsham的算法作了重要改进以便使其运行得更好,目标使所有基人工变量之和最小。首先,对非基变量按其简约价值系数从大到小逐列向前搜寻,将满足条件的变量带入基变量集,当简约价值系数为非正时终止。然后,以目标当前值与最优值的均值... 对Arsham的算法作了重要改进以便使其运行得更好,目标使所有基人工变量之和最小。首先,对非基变量按其简约价值系数从大到小逐列向前搜寻,将满足条件的变量带入基变量集,当简约价值系数为非正时终止。然后,以目标当前值与最优值的均值作为临界值,应用经典单纯形算法求解,当目标值超过临界值时,重复上述过程,直至基变量集处于完全状态。在计算机上对24个标准测试问题进行初步数值试验,计算结果表明,本文提出的改进算法比经典单纯形算法所用的总迭代次数要少得多,在22个问题上耗费更少的计算时间,大大改进了Arsham算法的计算效率,比Gao的一种改进算法的计算性能更稳定,因而是有价值的。 展开更多
关键词 线性规划 单纯形法 第一阶段问题 人工变量 基变量集
下载PDF
Generic reconstruction technology based on RST for multivariate time series of complex process industries 被引量:1
2
作者 孔玲爽 阳春华 +2 位作者 李建奇 朱红求 王雅琳 《Journal of Central South University》 SCIE EI CAS 2012年第5期1311-1316,共6页
In order to effectively analyse the multivariate time series data of complex process,a generic reconstruction technology based on reduction theory of rough sets was proposed,Firstly,the phase space of multivariate tim... In order to effectively analyse the multivariate time series data of complex process,a generic reconstruction technology based on reduction theory of rough sets was proposed,Firstly,the phase space of multivariate time series was originally reconstructed by a classical reconstruction technology.Then,the original decision-table of rough set theory was set up according to the embedding dimensions and time-delays of the original reconstruction phase space,and the rough set reduction was used to delete the redundant dimensions and irrelevant variables and to reconstruct the generic phase space,Finally,the input vectors for the prediction of multivariate time series were extracted according to generic reconstruction results to identify the parameters of prediction model.Verification results show that the developed reconstruction method leads to better generalization ability for the prediction model and it is feasible and worthwhile for application. 展开更多
关键词 complex process industry prediction model multivariate time series rough sets
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部