[Objective] This study aimed to analyze the interaction between genotype of flavonoids of barley grain and environment, to increase the flavonoid content of barley grain in cultivation and breeding. [Method] In this s...[Objective] This study aimed to analyze the interaction between genotype of flavonoids of barley grain and environment, to increase the flavonoid content of barley grain in cultivation and breeding. [Method] In this study, the content of cate- chin, myricetin, quercetin and kaempferol of barley grain planted in Kunming, Qujing and Baoshan were determined by HPLC, and the genotype, environment, genotype- environment interaction of the flavonoid content of barley grain were analyzed. [Result] According to the experimental results, the genotype variance, environmental variance and G x E interaction variance of catechin and kaempferol contents show the same trend: genotype variation 〉 environmental variation 〉 G × E interaction variation, which all reach a extremely significant level; the genotype variance, envi- ronmental variance and G × E interaction variance of quercetin and total flavonoid contents show the same trend: genetype variation 〉 G × E interaction variation 〉 environmental variation, which all reach a extremely significant level; the genotype variance and environmental variance of myricetin content both reach a extremely sig- nificant level, while the G × E interaction variance reaches a significant level, showing an order of genotype variation 〉 environmental variation 〉 G × E interaction variation; the genotype variance, environmental variance and G x E interaction vari- ance of total flavonoid content show an order of genotype variation 〉 environmental variation 〉 G × E interaction variation. Among different barley varieties, Ziguang- mangluoerling and Kuanyingdamai in Qujing, Kunming and Baoshan have relatively high content of quercetin, while other barley varieties barely contain any quercetin. The grains of Ziguangmangluoerling and Kuanyingdamai are purple, while the grains of other barley varieties are yellow. [Conclusion] Four main flavonoids and the total flavonoids of barley grain are mainly under genetic control and affected by genetic- environment interactions; the purple barley grains contain high content of quercetin.展开更多
Transgenic rice plants with an antisense gene inserted via Agrobacterium tumefaciens were used to explore the impact of the reduction of Rubisco activase (RCA) on Rubisco and photosynthesis. In this study, transforma...Transgenic rice plants with an antisense gene inserted via Agrobacterium tumefaciens were used to explore the impact of the reduction of Rubisco activase (RCA) on Rubisco and photosynthesis. In this study, transformants containing 15% to 35% wild type Rubisco activase were selected, which could survive in ambient CO2 concentration but grew slowly compared with wild type controls. Gas exchange measurements indicated that the rate of photosynthesis decreased sig- nificantly, while stomatal conductance and transpiration rate did not change; and that the intercellular CO2 concentration even increased. Rubisco determination showed that these plants had approximately twice as much Rubisco as the wild types, although they showed 70% lower rate of photosynthesis, which was likely an acclimation response to the reduction in Rubsico activase and/or the reduction in carbamylation.展开更多
Due to the elevated ecological awareness nowadays the consumption of products of organic agriculture is increasing. Organic farming means excluding the use of synthetic inputs, such as synthetic fertilizers and pestic...Due to the elevated ecological awareness nowadays the consumption of products of organic agriculture is increasing. Organic farming means excluding the use of synthetic inputs, such as synthetic fertilizers and pesticides or genetically modified organisms, but there are only a few regulations regarding heavy metal concentrations in soils. Thus a not negligible uptake of metals from the soil where the apple trees are grown may occur. Furthermore inorganic copper compounds being traditional fertilizers for apple trees are not considered as synthetic fertilizers, thus they are still used in organic apple farming for soil or foliar application. Thus also apples produced by organic agriculture may contain toxic elements, such as cadmium, chromium, copper, and lead. The concentrations of these elements were determined in whole apples, as well as in the flesh and peel in order to estimate the possible risk for human health. Prior to analysis using ICP-AES samples underwent a microwave assisted digestion. The LODs obtained are below the recommended maximum levels in vegetables/fruits by WHO. In all samples no Cu, Cr, and Pb could be detected. Only Ca was found in the peel of about a third of samples investigated in concentrations between LOD and LOQ (1-3 μg/g).展开更多
In order to elucidate the molecular mechanisms of globin gene expression during embryonic development, the nuclear extracts from mouse hematopoietic tissue at different stages of development have been prepared. By usi...In order to elucidate the molecular mechanisms of globin gene expression during embryonic development, the nuclear extracts from mouse hematopoietic tissue at different stages of development have been prepared. By using DNase I footprinting and gel mobility shift assays, the binding of protein factors in these extracts to the human βglobin promoter was analyzed. The differences in the binding patterns of protein factors during development were observed. An erythroid-specific and stage-specific nuclear protein in the nuclear extract from d 18 mouse fetal liver was identified, which can bind to the sequence (from -66bp to -90bp) of human β-globin promoter. We therefore speculate that the function of this cis-acting element may be similar to stage selector element (SSE) in chieken βA- promoter.展开更多
A polymeric polyethylenimine(PEI)-based prodrug of anticancer doxorubicin(DOX)(PEI-hyd-DOX) was designed by attaching DOX to PEI via an acid-labile hydrazone bond, for the achievement of biocontrollable gene and drug ...A polymeric polyethylenimine(PEI)-based prodrug of anticancer doxorubicin(DOX)(PEI-hyd-DOX) was designed by attaching DOX to PEI via an acid-labile hydrazone bond, for the achievement of biocontrollable gene and drug co-delivery in response to the intracellular acid microenvironments in the late endosome/lysosome compartments. The cytotoxicity of PEI-hyd-DOX was evaluated by the MTT assay and the cellular uptake was monitored using confocal laser scanning microscopy. The polymeric prodrug can respond with a high sensitivity to the specific acid condition inside cells, thus permitting the precise biocontrol over intracellular drug liberation with high drug efficacy. The chemical attachment of drug molecules also led to the relatively reduced toxicity and the enhanced transfection efficiency compared with parent PEI. The resulting data adumbrated the potential of PEI-hyd-DOX to co-deliver DOX and therapeutic gene for the combination of chemotherapy and gene therapy.展开更多
Thymine DNA glycosylase CrDG), an enzyme that initiates the repair of G/T and G/U mismatches, has been lately found crucial in em- bryonic development to maintain epigenetic stability and facilitate the active DNA de...Thymine DNA glycosylase CrDG), an enzyme that initiates the repair of G/T and G/U mismatches, has been lately found crucial in em- bryonic development to maintain epigenetic stability and facilitate the active DNA demethylation. Here we report a novel role of TDG in Wnt signaling as a transcriptional coactivator of β-catenin/TCFs complex. Our data show that TDG binds to the transcriptional factor family LEF1/TCFs and potentiates β-catenin/TCFs transactivation, while TDG depletion suppresses Wnt3a-stimulated reporter activity or target gene transcription. Next, we show that CBP, a known coactivator, is also required for TDG function through forming a coopera- tive complex on target promoters. Moreover, there is an elevation of TDG levels in human colon cancer tissue, and knockdown of TDG inhibits proliferation of the colon cells. Overall, our results reveal that TDG, as a new coactivator, promotes β-catenin/TCFs transacti- vation and functionally cooperates with CBP in canonical Wnt signaUng.展开更多
Both activated carbon and magnetite have been reported to promote the syntrophic growth of Geobacter metallireducens and Geobacter sulfurreducens co-cultures, the first model to show direct interspecies electron trans...Both activated carbon and magnetite have been reported to promote the syntrophic growth of Geobacter metallireducens and Geobacter sulfurreducens co-cultures, the first model to show direct interspecies electron transfer (DIET); however, differential transcriptomics of the promotion on co-cultures with these two conductive materials are unknown. Here, the comparative transcriptomic analysis of G. metallireducens and G. sulfurreducens co-cultures with granular activated carbon (GAC) and magnetite was reported. More than 2.6-fold reduced transcript abundances were determined for the uptake hydrogenase genes of G. sulfurreducens as well as other hydrogenases in those co-cultures to which conductive materials had been added. This is consistent with electron transfer in G. metallireducens-G. sulfurreducens co-cultures as evinced by direct interspecies electron transfer (DIET). Transcript abundance for the structural component of electrically conductive pili (e-pili), PilA, was 2.2-fold higher in G. metallireducens, and, in contrast, was 14.9-fold lower in G. sulfurreducens in co-cultures with GAC than in Geobacters co-cultures without GAC. However, it was 9.3-fold higher in G. sulfurreducens in co-cultures with magnetite than in Geobacters co-cultures. Mutation results showed that GAC can be substituted for the e-pili of both strains but magnetite can only compensate for that of G. sulfurreducens, indicating that the e-pili is a more important electron acceptor for the electron donor strain of G. metallireducens than for G. sulfurreducens. Transcript abundance for G. metallireducens c-type cytochrome gene GMET_RS14535, a homologue to c-type cytochrome gene omcE of G. sulfurreducens was 9.8-fold lower in co-cultures with GAC addition, while that for OmcS of G. sulfurreducens was 25.1-fold higher in co-cultures with magnetite, than in that without magnetite. Gene deletion studies showed that neither GAC nor magnetite can completely substitute the cytochrome (OmcE homologous) of G. metallireducens but compensate for the cytochrome (OmcS) of G. sulfurreducens. Moreover, some genes associated with central metabolism were up-regulated in the presence of both GAC and magnetite; however, tricarboxylic acid cycle gene transcripts in G. sulfurreducens were not highly-expressed in each of these amended co-cultures, suggesting that there was considerable redundancy in the pathways utilised by G. sulfurreducens for electron transfer to reduce fumarate with the amendment of GAC or magnetite. These results support the DIET model of G. metallireducens and G. sulfurreducens and suggest that e-pili and cytochromes of the electron donor strain are more important than that of the electron acceptor strain, indicating that comparative transcriptomics may be a promising route by which to reveal different responses of electron donor and acceptor during DIET in co-cultures.展开更多
The biosynthesis of antibiotics is controlled by cascade regulation involving cluster-situated regulators (CSRs) and pleiotropic regulators. Three CSRs have been identified in the jadomycin biosynthetic gene cluster, ...The biosynthesis of antibiotics is controlled by cascade regulation involving cluster-situated regulators (CSRs) and pleiotropic regulators. Three CSRs have been identified in the jadomycin biosynthetic gene cluster, including one OmpR-type activator (JadR1) and two TetR-like repressors (JadR* and JadR2). To examine their interactions in jadomycin biosynthesis, a series of mutants were generated and tested for jadomycin production. We noticed that jadomycin production in the jadR*-jadR2 double mutant was increased dramatically compared with either single mutant. Transcriptional analysis showed that jadR* and jadR2 act synergistically to repress jadomycin production by inhibiting the transcription of jadR1. Furthermore, jadR* and jadR2 reciprocally inhibit each other. The complex interactions among these three CSRs may provide clues for the activation of the jadomycin gene cluster, which would otherwise remain silent without stimulation from stress signals.展开更多
基金Supported by National Barley Industrial Technology System of China(CARS-05)National Natural Science Foundation of China(No.31260326)~~
文摘[Objective] This study aimed to analyze the interaction between genotype of flavonoids of barley grain and environment, to increase the flavonoid content of barley grain in cultivation and breeding. [Method] In this study, the content of cate- chin, myricetin, quercetin and kaempferol of barley grain planted in Kunming, Qujing and Baoshan were determined by HPLC, and the genotype, environment, genotype- environment interaction of the flavonoid content of barley grain were analyzed. [Result] According to the experimental results, the genotype variance, environmental variance and G x E interaction variance of catechin and kaempferol contents show the same trend: genotype variation 〉 environmental variation 〉 G × E interaction variation, which all reach a extremely significant level; the genotype variance, envi- ronmental variance and G × E interaction variance of quercetin and total flavonoid contents show the same trend: genetype variation 〉 G × E interaction variation 〉 environmental variation, which all reach a extremely significant level; the genotype variance and environmental variance of myricetin content both reach a extremely sig- nificant level, while the G × E interaction variance reaches a significant level, showing an order of genotype variation 〉 environmental variation 〉 G × E interaction variation; the genotype variance, environmental variance and G x E interaction vari- ance of total flavonoid content show an order of genotype variation 〉 environmental variation 〉 G × E interaction variation. Among different barley varieties, Ziguang- mangluoerling and Kuanyingdamai in Qujing, Kunming and Baoshan have relatively high content of quercetin, while other barley varieties barely contain any quercetin. The grains of Ziguangmangluoerling and Kuanyingdamai are purple, while the grains of other barley varieties are yellow. [Conclusion] Four main flavonoids and the total flavonoids of barley grain are mainly under genetic control and affected by genetic- environment interactions; the purple barley grains contain high content of quercetin.
基金Project supported by the National Natural Science Foundation ofChina (No. 39970440) Doctoral Foundation of Ministry of Edu-cation of China (No. 20020335043) and the National Basic Re-search Program (973) of China (No. G1999011706)
文摘Transgenic rice plants with an antisense gene inserted via Agrobacterium tumefaciens were used to explore the impact of the reduction of Rubisco activase (RCA) on Rubisco and photosynthesis. In this study, transformants containing 15% to 35% wild type Rubisco activase were selected, which could survive in ambient CO2 concentration but grew slowly compared with wild type controls. Gas exchange measurements indicated that the rate of photosynthesis decreased sig- nificantly, while stomatal conductance and transpiration rate did not change; and that the intercellular CO2 concentration even increased. Rubisco determination showed that these plants had approximately twice as much Rubisco as the wild types, although they showed 70% lower rate of photosynthesis, which was likely an acclimation response to the reduction in Rubsico activase and/or the reduction in carbamylation.
文摘Due to the elevated ecological awareness nowadays the consumption of products of organic agriculture is increasing. Organic farming means excluding the use of synthetic inputs, such as synthetic fertilizers and pesticides or genetically modified organisms, but there are only a few regulations regarding heavy metal concentrations in soils. Thus a not negligible uptake of metals from the soil where the apple trees are grown may occur. Furthermore inorganic copper compounds being traditional fertilizers for apple trees are not considered as synthetic fertilizers, thus they are still used in organic apple farming for soil or foliar application. Thus also apples produced by organic agriculture may contain toxic elements, such as cadmium, chromium, copper, and lead. The concentrations of these elements were determined in whole apples, as well as in the flesh and peel in order to estimate the possible risk for human health. Prior to analysis using ICP-AES samples underwent a microwave assisted digestion. The LODs obtained are below the recommended maximum levels in vegetables/fruits by WHO. In all samples no Cu, Cr, and Pb could be detected. Only Ca was found in the peel of about a third of samples investigated in concentrations between LOD and LOQ (1-3 μg/g).
文摘In order to elucidate the molecular mechanisms of globin gene expression during embryonic development, the nuclear extracts from mouse hematopoietic tissue at different stages of development have been prepared. By using DNase I footprinting and gel mobility shift assays, the binding of protein factors in these extracts to the human βglobin promoter was analyzed. The differences in the binding patterns of protein factors during development were observed. An erythroid-specific and stage-specific nuclear protein in the nuclear extract from d 18 mouse fetal liver was identified, which can bind to the sequence (from -66bp to -90bp) of human β-globin promoter. We therefore speculate that the function of this cis-acting element may be similar to stage selector element (SSE) in chieken βA- promoter.
基金supported by the National Natural Science Foundation of China (21374085, 21174110, 51233003)the Natural Science Foundation of Hubei Province of China (2014CFB697)the Fundamental Research Funds for the Central Universities (2042014kf0193)
文摘A polymeric polyethylenimine(PEI)-based prodrug of anticancer doxorubicin(DOX)(PEI-hyd-DOX) was designed by attaching DOX to PEI via an acid-labile hydrazone bond, for the achievement of biocontrollable gene and drug co-delivery in response to the intracellular acid microenvironments in the late endosome/lysosome compartments. The cytotoxicity of PEI-hyd-DOX was evaluated by the MTT assay and the cellular uptake was monitored using confocal laser scanning microscopy. The polymeric prodrug can respond with a high sensitivity to the specific acid condition inside cells, thus permitting the precise biocontrol over intracellular drug liberation with high drug efficacy. The chemical attachment of drug molecules also led to the relatively reduced toxicity and the enhanced transfection efficiency compared with parent PEI. The resulting data adumbrated the potential of PEI-hyd-DOX to co-deliver DOX and therapeutic gene for the combination of chemotherapy and gene therapy.
文摘Thymine DNA glycosylase CrDG), an enzyme that initiates the repair of G/T and G/U mismatches, has been lately found crucial in em- bryonic development to maintain epigenetic stability and facilitate the active DNA demethylation. Here we report a novel role of TDG in Wnt signaling as a transcriptional coactivator of β-catenin/TCFs complex. Our data show that TDG binds to the transcriptional factor family LEF1/TCFs and potentiates β-catenin/TCFs transactivation, while TDG depletion suppresses Wnt3a-stimulated reporter activity or target gene transcription. Next, we show that CBP, a known coactivator, is also required for TDG function through forming a coopera- tive complex on target promoters. Moreover, there is an elevation of TDG levels in human colon cancer tissue, and knockdown of TDG inhibits proliferation of the colon cells. Overall, our results reveal that TDG, as a new coactivator, promotes β-catenin/TCFs transacti- vation and functionally cooperates with CBP in canonical Wnt signaUng.
基金supported by the Major Research plan(91751112)the General Programme(41371257,41573071)of the National Natural Science Foundation of China+2 种基金Shandong Natural Science Fund for Distinguished Young Scholars(JQ201608)the Young Taishan Scholars Programme of Shandong Province(tsqn20161054)the Key Research Project for Frontier Science of the Chinese Academy of Sciences(QYZDJ-SSW-DQC015)
文摘Both activated carbon and magnetite have been reported to promote the syntrophic growth of Geobacter metallireducens and Geobacter sulfurreducens co-cultures, the first model to show direct interspecies electron transfer (DIET); however, differential transcriptomics of the promotion on co-cultures with these two conductive materials are unknown. Here, the comparative transcriptomic analysis of G. metallireducens and G. sulfurreducens co-cultures with granular activated carbon (GAC) and magnetite was reported. More than 2.6-fold reduced transcript abundances were determined for the uptake hydrogenase genes of G. sulfurreducens as well as other hydrogenases in those co-cultures to which conductive materials had been added. This is consistent with electron transfer in G. metallireducens-G. sulfurreducens co-cultures as evinced by direct interspecies electron transfer (DIET). Transcript abundance for the structural component of electrically conductive pili (e-pili), PilA, was 2.2-fold higher in G. metallireducens, and, in contrast, was 14.9-fold lower in G. sulfurreducens in co-cultures with GAC than in Geobacters co-cultures without GAC. However, it was 9.3-fold higher in G. sulfurreducens in co-cultures with magnetite than in Geobacters co-cultures. Mutation results showed that GAC can be substituted for the e-pili of both strains but magnetite can only compensate for that of G. sulfurreducens, indicating that the e-pili is a more important electron acceptor for the electron donor strain of G. metallireducens than for G. sulfurreducens. Transcript abundance for G. metallireducens c-type cytochrome gene GMET_RS14535, a homologue to c-type cytochrome gene omcE of G. sulfurreducens was 9.8-fold lower in co-cultures with GAC addition, while that for OmcS of G. sulfurreducens was 25.1-fold higher in co-cultures with magnetite, than in that without magnetite. Gene deletion studies showed that neither GAC nor magnetite can completely substitute the cytochrome (OmcE homologous) of G. metallireducens but compensate for the cytochrome (OmcS) of G. sulfurreducens. Moreover, some genes associated with central metabolism were up-regulated in the presence of both GAC and magnetite; however, tricarboxylic acid cycle gene transcripts in G. sulfurreducens were not highly-expressed in each of these amended co-cultures, suggesting that there was considerable redundancy in the pathways utilised by G. sulfurreducens for electron transfer to reduce fumarate with the amendment of GAC or magnetite. These results support the DIET model of G. metallireducens and G. sulfurreducens and suggest that e-pili and cytochromes of the electron donor strain are more important than that of the electron acceptor strain, indicating that comparative transcriptomics may be a promising route by which to reveal different responses of electron donor and acceptor during DIET in co-cultures.
基金supported by grants from the Ministry of Science and Technology of China (2013CB734001, 2009CB118905)the National Natural Science Foundation of China (31270110, 31030003)
文摘The biosynthesis of antibiotics is controlled by cascade regulation involving cluster-situated regulators (CSRs) and pleiotropic regulators. Three CSRs have been identified in the jadomycin biosynthetic gene cluster, including one OmpR-type activator (JadR1) and two TetR-like repressors (JadR* and JadR2). To examine their interactions in jadomycin biosynthesis, a series of mutants were generated and tested for jadomycin production. We noticed that jadomycin production in the jadR*-jadR2 double mutant was increased dramatically compared with either single mutant. Transcriptional analysis showed that jadR* and jadR2 act synergistically to repress jadomycin production by inhibiting the transcription of jadR1. Furthermore, jadR* and jadR2 reciprocally inhibit each other. The complex interactions among these three CSRs may provide clues for the activation of the jadomycin gene cluster, which would otherwise remain silent without stimulation from stress signals.