The relationship between microsatellite polymorphism and body weight of captive bred Chinese sea cucumber Apostichopus japonicus was investigated in two local populations in Dalian. Among ten loci discovered, nine sho...The relationship between microsatellite polymorphism and body weight of captive bred Chinese sea cucumber Apostichopus japonicus was investigated in two local populations in Dalian. Among ten loci discovered, nine show changes except for AJ07 loci. Seven loci were found highly polymorphic in both populations. For each locus in two populations, the average number of alleles is 6.428 6 and 6.285 7, the average observed heterozygosity at 0.225 7 and 0.245 9, the expected heterozygosity at 0.776 8 and 0.748 8, the polymorphism information content (PIC) at 0.709 2 and 0.674 6, respectively. Further analysis show significant correlation between A. japonicus body weight and occurrence markers AJ02 and AJ04. The findings of the relation may be helpful for molecular breeding, as well as the marker-assisted selection of sea cucumbers.展开更多
基金Supported by the National High Technology Research and Development Program of China (863 Program, No. 2006AA10A411)the Natural Science Foundation of Liaoning Province (No.20072139)the Grant of Dalian Fisheries University, the Key Laboratory Foundation of the Educational Department of Liaoning Province (No.2009S024)
文摘The relationship between microsatellite polymorphism and body weight of captive bred Chinese sea cucumber Apostichopus japonicus was investigated in two local populations in Dalian. Among ten loci discovered, nine show changes except for AJ07 loci. Seven loci were found highly polymorphic in both populations. For each locus in two populations, the average number of alleles is 6.428 6 and 6.285 7, the average observed heterozygosity at 0.225 7 and 0.245 9, the expected heterozygosity at 0.776 8 and 0.748 8, the polymorphism information content (PIC) at 0.709 2 and 0.674 6, respectively. Further analysis show significant correlation between A. japonicus body weight and occurrence markers AJ02 and AJ04. The findings of the relation may be helpful for molecular breeding, as well as the marker-assisted selection of sea cucumbers.