用生物素(Biotin-16-dUTP)标记的大麦Betzes基因组DNA作探针,以普通小麦中国春总DNA作封阻进行基因组原位杂交(Genome in situ hybridization,简称GISH),从13株小麦-大麦杂交后代中鉴定出2个含有3条大麦Betzes 2H染色体的材料(2n...用生物素(Biotin-16-dUTP)标记的大麦Betzes基因组DNA作探针,以普通小麦中国春总DNA作封阻进行基因组原位杂交(Genome in situ hybridization,简称GISH),从13株小麦-大麦杂交后代中鉴定出2个含有3条大麦Betzes 2H染色体的材料(2n=43);2个2H单体异代换系(2n=42);7个2H二体异代换系(2n=42)。用已定位在小麦第2部分同源群短臂上的探针psr131进行RFLP分析,结果表明大麦Betzes、代换系A5有1条区别于小麦中国春的特异带,A5的2条2A染色体被大麦Betzes的2条2H染色体所代换。GISH及RFLP的准确鉴定及小麦-大麦2H二体异代换系的首次获得,为向小麦导入2H染色体上的有用基因提供了宝贵材料。展开更多
The uptodate advances of genomic in situ hybridization (GISH) for last ten years are reviewed in the article. These methods initially deriving from animal research have been developed in plant study, such as Multicolo...The uptodate advances of genomic in situ hybridization (GISH) for last ten years are reviewed in the article. These methods initially deriving from animal research have been developed in plant study, such as Multicolor Fluorescence in situ Hybridization (McFISH), Third strand in situ Hybridization (TISH), Comparative Genomic Hybridization (CGH) and Simultaneous in situ Hybridization. GISH applied widely in plant can reveal the species origin and evolution and determine the truth of distant hybrid containing foreign chromatin. Also it can research the chromosome behaviour including B chromosome and explore the genomic mapping and genic function. Finally the applicability and resolving power of GISH about taxonomic distance, genomic size and the length of chromosome fragment are discussed, as well as the future and the status of GISH in plant.展开更多
【目的】利用基因组荧光原位杂交(genomic in situ hybridization,GISH)技术,对黄瓜(Cucumis sativus L.,2n=2x=14)种内两个变种(栽培黄瓜C.sativus var.sativus和野生黄瓜C.sativus var hardwickii)进行中期染色体分析,建立黄瓜变种染...【目的】利用基因组荧光原位杂交(genomic in situ hybridization,GISH)技术,对黄瓜(Cucumis sativus L.,2n=2x=14)种内两个变种(栽培黄瓜C.sativus var.sativus和野生黄瓜C.sativus var hardwickii)进行中期染色体分析,建立黄瓜变种染色体核型的快速分析方法,为黄瓜细胞分子遗传学研究提供基础。【方法】以栽培黄瓜‘9930’和野生黄瓜C.sativus var.hardwickii为材料,利用CTAB法提取栽培黄瓜‘9930’的基因组总DNA,采用缺刻平移法,将栽培黄瓜‘9930’基因组DNA和45S r DNA分别利用地高辛和生物素标记为探针,与栽培黄瓜‘9930’和野生变种C.sativus var.hardwickii的中期染色体进行荧光原位杂交,根据杂交结果显示的栽培黄瓜与野生变种每条染色体GISH荧光带型的不同,结合45S r DNA位点信号特征,区分栽培黄瓜与野生变种的每条染色体,并进行核型分析。【结果】荧光原位杂交结果显示,GISH信号并非平均分布于所有染色体上,而是在不同染色体的特定部位产生独特的信号,且两个变种间中期染色体的GISH信号模式差异显著。在栽培黄瓜‘9930’有丝分裂中期染色体上,除了6号染色体仅在短臂末端和近着丝粒处产生GISH信号外,其他染色体上的GISH信号集中分布于染色体的两端和近着丝粒的一侧或两侧,且每条染色体的信号特征差异明显;45S r DNA信号主要分布于‘9930’的第1、2、3、4和7号染色体的近着丝粒处,有3对强信号和2对弱信号。在野生黄瓜C.sativus var.hardwickii有丝分裂中期染色体上,杂交信号的位置及强弱与栽培黄瓜‘9930’表现明显不同,近着丝粒处均有GISH信号,但仅在第1、2、4和5号染色体的一端产生GISH信号,45S r DNA信号仅出现在第1、2和3号染色体上,表现为第1号染色体上信号极强,第2和3号染色体上信号极微弱。这些结果显示,以栽培黄瓜基因组DNA为探针的荧光原位杂交能反应出两个变种中期染色体独特的信号分布模式,通过信号的分布模式和强弱,结合45S r DNA位点信号的特异分布,可对每条染色体进行清晰地鉴别,并据此建立了两个变种的核型模式。比较前人发表的黄瓜已有重复序列的分布图,发现GISH揭示的信号分布主要位于黄瓜染色体串联重复序列区域。【结论】黄瓜基因组原位杂交能一次性快速显示基因组串联重复序列的分布图,能有效地用于不同黄瓜变种的快速核型分析;同时发现染色体上串联重复序列的分布及强弱在黄瓜变种间表现出明显的分化。展开更多
在基因组原位杂交中,适当的封阻可以大大提高基因组原位杂交的效率。本研究采用煮沸法、超声波剪切法对大白菜基因组DNA进行剪切,研究了大白菜封阻DNA的制备方法。结果表明:珠沸法效率高,操作简单,当煮沸70 min DNA片段大小主要集中在20...在基因组原位杂交中,适当的封阻可以大大提高基因组原位杂交的效率。本研究采用煮沸法、超声波剪切法对大白菜基因组DNA进行剪切,研究了大白菜封阻DNA的制备方法。结果表明:珠沸法效率高,操作简单,当煮沸70 min DNA片段大小主要集中在200~500 bp,适于在基因组原位杂交中作为封阻。研究结果为基因组原位杂交的应用奠定了基础。展开更多
文摘用生物素(Biotin-16-dUTP)标记的大麦Betzes基因组DNA作探针,以普通小麦中国春总DNA作封阻进行基因组原位杂交(Genome in situ hybridization,简称GISH),从13株小麦-大麦杂交后代中鉴定出2个含有3条大麦Betzes 2H染色体的材料(2n=43);2个2H单体异代换系(2n=42);7个2H二体异代换系(2n=42)。用已定位在小麦第2部分同源群短臂上的探针psr131进行RFLP分析,结果表明大麦Betzes、代换系A5有1条区别于小麦中国春的特异带,A5的2条2A染色体被大麦Betzes的2条2H染色体所代换。GISH及RFLP的准确鉴定及小麦-大麦2H二体异代换系的首次获得,为向小麦导入2H染色体上的有用基因提供了宝贵材料。
文摘The uptodate advances of genomic in situ hybridization (GISH) for last ten years are reviewed in the article. These methods initially deriving from animal research have been developed in plant study, such as Multicolor Fluorescence in situ Hybridization (McFISH), Third strand in situ Hybridization (TISH), Comparative Genomic Hybridization (CGH) and Simultaneous in situ Hybridization. GISH applied widely in plant can reveal the species origin and evolution and determine the truth of distant hybrid containing foreign chromatin. Also it can research the chromosome behaviour including B chromosome and explore the genomic mapping and genic function. Finally the applicability and resolving power of GISH about taxonomic distance, genomic size and the length of chromosome fragment are discussed, as well as the future and the status of GISH in plant.
文摘【目的】利用基因组荧光原位杂交(genomic in situ hybridization,GISH)技术,对黄瓜(Cucumis sativus L.,2n=2x=14)种内两个变种(栽培黄瓜C.sativus var.sativus和野生黄瓜C.sativus var hardwickii)进行中期染色体分析,建立黄瓜变种染色体核型的快速分析方法,为黄瓜细胞分子遗传学研究提供基础。【方法】以栽培黄瓜‘9930’和野生黄瓜C.sativus var.hardwickii为材料,利用CTAB法提取栽培黄瓜‘9930’的基因组总DNA,采用缺刻平移法,将栽培黄瓜‘9930’基因组DNA和45S r DNA分别利用地高辛和生物素标记为探针,与栽培黄瓜‘9930’和野生变种C.sativus var.hardwickii的中期染色体进行荧光原位杂交,根据杂交结果显示的栽培黄瓜与野生变种每条染色体GISH荧光带型的不同,结合45S r DNA位点信号特征,区分栽培黄瓜与野生变种的每条染色体,并进行核型分析。【结果】荧光原位杂交结果显示,GISH信号并非平均分布于所有染色体上,而是在不同染色体的特定部位产生独特的信号,且两个变种间中期染色体的GISH信号模式差异显著。在栽培黄瓜‘9930’有丝分裂中期染色体上,除了6号染色体仅在短臂末端和近着丝粒处产生GISH信号外,其他染色体上的GISH信号集中分布于染色体的两端和近着丝粒的一侧或两侧,且每条染色体的信号特征差异明显;45S r DNA信号主要分布于‘9930’的第1、2、3、4和7号染色体的近着丝粒处,有3对强信号和2对弱信号。在野生黄瓜C.sativus var.hardwickii有丝分裂中期染色体上,杂交信号的位置及强弱与栽培黄瓜‘9930’表现明显不同,近着丝粒处均有GISH信号,但仅在第1、2、4和5号染色体的一端产生GISH信号,45S r DNA信号仅出现在第1、2和3号染色体上,表现为第1号染色体上信号极强,第2和3号染色体上信号极微弱。这些结果显示,以栽培黄瓜基因组DNA为探针的荧光原位杂交能反应出两个变种中期染色体独特的信号分布模式,通过信号的分布模式和强弱,结合45S r DNA位点信号的特异分布,可对每条染色体进行清晰地鉴别,并据此建立了两个变种的核型模式。比较前人发表的黄瓜已有重复序列的分布图,发现GISH揭示的信号分布主要位于黄瓜染色体串联重复序列区域。【结论】黄瓜基因组原位杂交能一次性快速显示基因组串联重复序列的分布图,能有效地用于不同黄瓜变种的快速核型分析;同时发现染色体上串联重复序列的分布及强弱在黄瓜变种间表现出明显的分化。
文摘在基因组原位杂交中,适当的封阻可以大大提高基因组原位杂交的效率。本研究采用煮沸法、超声波剪切法对大白菜基因组DNA进行剪切,研究了大白菜封阻DNA的制备方法。结果表明:珠沸法效率高,操作简单,当煮沸70 min DNA片段大小主要集中在200~500 bp,适于在基因组原位杂交中作为封阻。研究结果为基因组原位杂交的应用奠定了基础。