Engineered Corynebacterium glutamicum was constructed for L-ornithine production by disrupting genes of argF and proB to prevent the flux away from L-ornithine.Effect of the inactivation of 2-oxoglutarate de-hydrogena...Engineered Corynebacterium glutamicum was constructed for L-ornithine production by disrupting genes of argF and proB to prevent the flux away from L-ornithine.Effect of the inactivation of 2-oxoglutarate de-hydrogenase complex(ODHC) on L-ornithine production was also investigated.It was found that the inactivation of ODHC by knockout of the kgd gene enhanced L-ornithine production.The engineered C.glutamicum ATCC13032(ΔargFΔproBΔkgd) produced L-ornithine up to 4.78 g·L-1 from 0.24 g·L-1 of the wild-type strain.In order to understand the mechanism of L-ornithine production in C.glutamicum ATCC13032(ΔargFΔproBΔkgd) and find out new strategies for further enhancing L-ornithine production,the comparative proteome between the wild-type and the engineered strain was analyzed.L-Ornithine overproduction in the engineered strain was related to the up-regulation of the expression levels of enzymes involved in L-ornithine biosynthesis pathway and down-regulation of the expression levels of proteins involved in pentose phosphate pathway.The overexpression of genes in the upstream pathway of glutamate to increase the availability of endogenous glutamate may further in-crease ornithine production in the engineered C.glutamicum and the ornithine synthesis enzymes(ArgCJBD) may not be the limiting enzymes in the engineered C.glutamicum.展开更多
Objective To study the regulatory mechanism of SATB1 repression in cells other than T cells or erythroid cells, which have high expression level of SATB1. Methods HeLa epithelial cells were treated with either histone...Objective To study the regulatory mechanism of SATB1 repression in cells other than T cells or erythroid cells, which have high expression level of SATB1. Methods HeLa epithelial cells were treated with either histone deacetylase inhibitor (HDACi) trichostatin A (TSA) or DNA methylation inhibitor 5-Aza-C before detecting SATB1 expression. Luciferase reporter system was applied to measure effects of EZH2 on SATB1 promoter activity. Over-expression or knockdown of EZH2 and subsequent quantitative reverse transcription-polymerase chain reaction were performed to determine the effect of this Polycomb group protein on SATB1 transcription. Chromatin immunoprecipitation (ChIP) assay was applied to measure enrichment of EZH2 and trimethylated H3K27 (H3K27me3) at SATB1 promoter in HeLa cells. K562 cells and Jurkat cells, both having high-level expression of SATB1, were used in the ChIP experiment as controls. Results Both TSA and 5-Aza-C increased SATB1 expression in HeLa cells. Over-expression of EZH2 reduced promoter activity as well as the mRNA level of SATB1, while knockdown of EZH2 apparently enhanced SATB1 expression in HeLa cells but not in K562 cells and Jurkat cells. ChIP assay results suggested that epigenetic silencing of SATB1 by EZH2 in HeLa cells was mediated by trimethylation modification of H3K27. In contrast, enrichment of EZH2 and H3K27me3 was not detected within proximal promoter region of SATB1 in either K562 or Jurkat cells. Conclusion SATB1 is a bona fide EZH2 target gene in HeLa cells and the repression of SATB1 by EZH2 may be mediated by trimethylation modification on H3K27.展开更多
The asialoglycoprotein (ASGP) receptor is a wellcharacterized hepatic receptor that is recycled via the common cellular process of receptor-mediated endocytosis (RME). The RME process plays an integral part in the...The asialoglycoprotein (ASGP) receptor is a wellcharacterized hepatic receptor that is recycled via the common cellular process of receptor-mediated endocytosis (RME). The RME process plays an integral part in the proper trafficking and routing of receptors and ligands in the healthy cell. Thus, the missorting or altered transport of proteins during RME is thought to play a role in several diseases associated with hepatocyte and liver dysfunction. Previously, we examined in detail alterations that occur in hepatocellular RME and associated receptor functions as a result of one particular liver injury, alcoholic liver disease (ALD). The studies revealed profound ethanol- mediated impairments to the ASGP receptor and the RME process, indicating the importance of this receptor and the maintenance of proper endocytic events in normal tissue. To further clarify these observations, studies were performed utilizing knockout mice (lacking a functional ASGP receptor) to which were administered several liver toxicants. In addition to alcohol, we examined the effects following administration of anti- Fas (CD95) antibody, carbon tetrachloride (CCh) and lipopolysaccharide (LPS)/galactosamine. The results of these studies demonstrated that the knockout mice sustained enhanced liver injury in response to all of the treatments, as shown by increased indices of liver damage, such as enhancement of serum enzyme levels, histopathological scores, as well as hepatocellular death. Overall, the work completed to date suggests a possible link between hepatic receptors and liver injury. In particular, adequate function and content of the ASGP receptor may provide protection against various toxinmediated liver diseases.展开更多
Abstract Objectives To investigate the tissue specificity of reactive oxygen species (ROS) damage to mitochondrial DNA (mtDNA) and to determine whether cochlear mtDNA is a sensitive target for ROS damage. Methods 10...Abstract Objectives To investigate the tissue specificity of reactive oxygen species (ROS) damage to mitochondrial DNA (mtDNA) and to determine whether cochlear mtDNA is a sensitive target for ROS damage. Methods 10 Cu/ZnSOD gene (Cu/Zn superoxide dismutase gene, Sod1) knockout mice and 16 wild-type mice were analyzed by nested polymerase chain reaction (PCR).Results Three deletions were detected in various tissues of Sod1 knockout mice. MtDNA3867bp and mtDNA3726bp deletions were the most visible, and mtDNA4236bp deletion was barely detected in these tissues. There were obvious differences in the ratio of deleted mtDNA/total mtDNA in different tissue. Deleted mtDNA was most abundant in the liver and kidney and less in cochlea, heart and brain. The lowest was in spleen and skin. The ratio in various tissues was 3-20 times in Sod1 knockout mice over wild-type mice. In cochlea, the ratio was about 15. Conclusions Without the protection of Sod1, ROS can lead to mtDNA deletions in various tissues with significant tissue specificity. Cochlear mtDNA is a sensitive target for ROS damage.展开更多
基金Supported by the National Natural Science Foundation of China (30970089,20876181,20831006)the Natural Science Foundation of Guangdong Province (9351027501000003)
文摘Engineered Corynebacterium glutamicum was constructed for L-ornithine production by disrupting genes of argF and proB to prevent the flux away from L-ornithine.Effect of the inactivation of 2-oxoglutarate de-hydrogenase complex(ODHC) on L-ornithine production was also investigated.It was found that the inactivation of ODHC by knockout of the kgd gene enhanced L-ornithine production.The engineered C.glutamicum ATCC13032(ΔargFΔproBΔkgd) produced L-ornithine up to 4.78 g·L-1 from 0.24 g·L-1 of the wild-type strain.In order to understand the mechanism of L-ornithine production in C.glutamicum ATCC13032(ΔargFΔproBΔkgd) and find out new strategies for further enhancing L-ornithine production,the comparative proteome between the wild-type and the engineered strain was analyzed.L-Ornithine overproduction in the engineered strain was related to the up-regulation of the expression levels of enzymes involved in L-ornithine biosynthesis pathway and down-regulation of the expression levels of proteins involved in pentose phosphate pathway.The overexpression of genes in the upstream pathway of glutamate to increase the availability of endogenous glutamate may further in-crease ornithine production in the engineered C.glutamicum and the ornithine synthesis enzymes(ArgCJBD) may not be the limiting enzymes in the engineered C.glutamicum.
基金Supported by National Natural Science Foundation of China (30721063)National Basic Research Program of China (973 Program) (2005CB522402, 2006CB910403)+1 种基金National Laboratory of Medical Molecular Biology grant (2060204)Beijing municipal government grant (YB20081002301)
文摘Objective To study the regulatory mechanism of SATB1 repression in cells other than T cells or erythroid cells, which have high expression level of SATB1. Methods HeLa epithelial cells were treated with either histone deacetylase inhibitor (HDACi) trichostatin A (TSA) or DNA methylation inhibitor 5-Aza-C before detecting SATB1 expression. Luciferase reporter system was applied to measure effects of EZH2 on SATB1 promoter activity. Over-expression or knockdown of EZH2 and subsequent quantitative reverse transcription-polymerase chain reaction were performed to determine the effect of this Polycomb group protein on SATB1 transcription. Chromatin immunoprecipitation (ChIP) assay was applied to measure enrichment of EZH2 and trimethylated H3K27 (H3K27me3) at SATB1 promoter in HeLa cells. K562 cells and Jurkat cells, both having high-level expression of SATB1, were used in the ChIP experiment as controls. Results Both TSA and 5-Aza-C increased SATB1 expression in HeLa cells. Over-expression of EZH2 reduced promoter activity as well as the mRNA level of SATB1, while knockdown of EZH2 apparently enhanced SATB1 expression in HeLa cells but not in K562 cells and Jurkat cells. ChIP assay results suggested that epigenetic silencing of SATB1 by EZH2 in HeLa cells was mediated by trimethylation modification of H3K27. In contrast, enrichment of EZH2 and H3K27me3 was not detected within proximal promoter region of SATB1 in either K562 or Jurkat cells. Conclusion SATB1 is a bona fide EZH2 target gene in HeLa cells and the repression of SATB1 by EZH2 may be mediated by trimethylation modification on H3K27.
基金Supported by The National Institute on Alcohol Abuse and Alcoholismthe Department of Veterans Affairs
文摘The asialoglycoprotein (ASGP) receptor is a wellcharacterized hepatic receptor that is recycled via the common cellular process of receptor-mediated endocytosis (RME). The RME process plays an integral part in the proper trafficking and routing of receptors and ligands in the healthy cell. Thus, the missorting or altered transport of proteins during RME is thought to play a role in several diseases associated with hepatocyte and liver dysfunction. Previously, we examined in detail alterations that occur in hepatocellular RME and associated receptor functions as a result of one particular liver injury, alcoholic liver disease (ALD). The studies revealed profound ethanol- mediated impairments to the ASGP receptor and the RME process, indicating the importance of this receptor and the maintenance of proper endocytic events in normal tissue. To further clarify these observations, studies were performed utilizing knockout mice (lacking a functional ASGP receptor) to which were administered several liver toxicants. In addition to alcohol, we examined the effects following administration of anti- Fas (CD95) antibody, carbon tetrachloride (CCh) and lipopolysaccharide (LPS)/galactosamine. The results of these studies demonstrated that the knockout mice sustained enhanced liver injury in response to all of the treatments, as shown by increased indices of liver damage, such as enhancement of serum enzyme levels, histopathological scores, as well as hepatocellular death. Overall, the work completed to date suggests a possible link between hepatic receptors and liver injury. In particular, adequate function and content of the ASGP receptor may provide protection against various toxinmediated liver diseases.
基金NationalOutstandingYouthSciencesFoundation (No 3972 5 0 2 6)andPostdoctoralSciencesFoundationofChina (No 2 0 0 0 2 3)
文摘Abstract Objectives To investigate the tissue specificity of reactive oxygen species (ROS) damage to mitochondrial DNA (mtDNA) and to determine whether cochlear mtDNA is a sensitive target for ROS damage. Methods 10 Cu/ZnSOD gene (Cu/Zn superoxide dismutase gene, Sod1) knockout mice and 16 wild-type mice were analyzed by nested polymerase chain reaction (PCR).Results Three deletions were detected in various tissues of Sod1 knockout mice. MtDNA3867bp and mtDNA3726bp deletions were the most visible, and mtDNA4236bp deletion was barely detected in these tissues. There were obvious differences in the ratio of deleted mtDNA/total mtDNA in different tissue. Deleted mtDNA was most abundant in the liver and kidney and less in cochlea, heart and brain. The lowest was in spleen and skin. The ratio in various tissues was 3-20 times in Sod1 knockout mice over wild-type mice. In cochlea, the ratio was about 15. Conclusions Without the protection of Sod1, ROS can lead to mtDNA deletions in various tissues with significant tissue specificity. Cochlear mtDNA is a sensitive target for ROS damage.