穗轴粗和出籽率均是典型的数量性状,在不同程度上影响玉米产量。全基因组选择整合全基因组关联分析(GWAS,genome-wide association study)的先验信息是提高性状预测准确性的有效方法。本研究利用309份玉米自交系穗轴粗和出籽率表型和基...穗轴粗和出籽率均是典型的数量性状,在不同程度上影响玉米产量。全基因组选择整合全基因组关联分析(GWAS,genome-wide association study)的先验信息是提高性状预测准确性的有效方法。本研究利用309份玉米自交系穗轴粗和出籽率表型和基因分型测序技术获得的基因型数据,研究基因组最佳线性无偏预测(GBLUP,genomic best linear unbiased prediction)、贝叶斯A(Bayes A)和再生核希尔伯特空间(RKHS,reproducing kernel Hilbert space)模型对2种GWAS方法即固定和随机模型交替概率统一(FarmCPU,fixed and random model circulating probability unification)和压缩混合线性模型(CMLM,compressed mixed linear model)衍生的不同数量标记集、随机选择标记集和所有标记对预测准确性的影响。对于2个性状FarmCPU和CMLM衍生标记集,3个预测模型间的预测准确性差异较小,差值变异范围介于0~0.03。对于随机标记集,相比其他2个模型的预测准确性,RKHS对穗轴粗可提高3.57%~15.91%,而3个预测模型对出籽率具有相似的预测效果。除了50和100个标记,3个模型利用CMLM衍生标记对2个性状的预测效果均优于FarmCPU。相比随机标记集,穗轴粗GWAS衍生标记的预测准确性可提高15.52%~88.37%;出籽率利用衍生标记可提高1~5.89倍。所有衍生标记集的预测准确性均高于所有标记。这些结果均表明,全基因组选择整合GWAS衍生标记有利于提高穗轴粗和出籽率的预测准确性。展开更多
【目的】揭示基于动物模型最佳线性无偏预测(animal model best linear unbiased prediction,AM-BLUP)的选择指数对杜洛克猪生长及繁殖性状的选育效果。【方法】在采用AM-BLUP方法估计个体目标性状育种值基础上,以达100 kg体质量日龄(...【目的】揭示基于动物模型最佳线性无偏预测(animal model best linear unbiased prediction,AM-BLUP)的选择指数对杜洛克猪生长及繁殖性状的选育效果。【方法】在采用AM-BLUP方法估计个体目标性状育种值基础上,以达100 kg体质量日龄(相对权重0.7)和100 kg活体背膘厚(相对权重0.3)为主选性状构建选择指数,对1个闭锁的杜洛克猪群开展持续7年(2013—2019年)的选育,系统分析选育期间猪群6个生长及繁殖性状表型值、估计育种值(estimated breeding value,EBV)、选择指数及近交系数的变化。【结果】相较于2013年,2019年猪群达100 kg体质量日龄、100 kg活体背膘厚和30~100 kg料重比分别极显著缩短4.45 d、降低0.52 mm和降低0.05(P<0.01);初产和经产母猪的总产仔数分别提高0.99头(P<0.05)和1.02头(P>0.05),产活仔数分别提高0.72头和0.49头(P>0.05),21日龄窝重分别降低0.39 kg和提高6.20 kg(P>0.05);主选性状达100 kg体质量日龄和100 kg活体背膘厚的EBV分别极显著降低3.447和0.533(P<0.01),选择指数极显著提高23.62(P<0.01),除30~100 kg料重比外,其余辅选性状的EBV均获得了不同程度改进。选育结束时,群体平均近交系数为3.1973%,年均增量为0.4904%。【结论】基于AM-BLUP的指数选择可有效改良猪的生产性状,但不同性状的具体选择进展会因其遗传特性的不同而异。展开更多
【目的】为提高豫农黑猪体尺性状遗传参数估计的准确性,加快豫农黑猪选育进展。【方法】利用最佳线性无偏预测(best linear unbiased prediction,BLUP)和基因组最佳线性无偏预测(genomic best linear unbiased prediction,GBLUP)2种方法...【目的】为提高豫农黑猪体尺性状遗传参数估计的准确性,加快豫农黑猪选育进展。【方法】利用最佳线性无偏预测(best linear unbiased prediction,BLUP)和基因组最佳线性无偏预测(genomic best linear unbiased prediction,GBLUP)2种方法,构建3个单性状动物模型,即基于BLUP的模型1、基于GBLUP的模型2以及基于包含基因组近交系数GBLUP的模型3,采用平均信息约束性最大似然算法(average information restricted maximum likelihood,AIREML)对702头豫农黑猪体尺性状的遗传参数进行估计。【结果】在遗传参数估计的准确性方面,模型1估计的准确性低于模型2和3;模型3和模型2相比,提高了胸围、腿臀围和眼肌深度性状遗传参数估计的准确性。模型3估计体高、腿臀围、背膘厚和眼肌深度的遗传力为0.566、0.302、0.467和0.652,属于高遗传力性状;体长、胸围和管围的遗传力为0.152、0.122和0.255,属于中遗传力性状。体尺性状间的表型相关系数为-0.009~0.576,遗传相关系数为-0.108~0.985。【结论】在估计豫农黑猪体尺性状遗传参数时,采用近交系数的GBLUP模型可以提高遗传评估的准确性,本研究结果为生产实践中加快遗传进展提供了科学依据。展开更多
为了进一步观察最佳线性无偏预测(best linear unbiased prediction,BLUP)家系选育方法在福瑞鲤(Cyprinus carpio)继代选育中的潜力,该研究测量了继续选育第2代家系群体不同养殖阶段的体质量和形态性状。结果表明,生长快速家系群福瑞鲤...为了进一步观察最佳线性无偏预测(best linear unbiased prediction,BLUP)家系选育方法在福瑞鲤(Cyprinus carpio)继代选育中的潜力,该研究测量了继续选育第2代家系群体不同养殖阶段的体质量和形态性状。结果表明,生长快速家系群福瑞鲤早期(4月龄)生长速度较慢,到后期则生长加快,其体质量增长表现出明显的优势。在体型方面,随着养殖时间的延长,福瑞鲤各选育家系群的体厚/体长增加,体高/体长降低,逐渐呈现其体型修长的特征;同时2个越冬期的成活率均达到了94%以上。结果表明通过BLUP家系选育对福瑞鲤长期选育是可行的。在此基础上,通过主成分分析发现,福瑞鲤生长性状第一主成分是体质量;对不同生长时期的体质量进行相关性分析,发现9月龄、14月龄、21月龄鱼的体质量与24月龄的相关系数均达到极显著水平(P<0.01),分别为0.851、0.897和0.957。因此,在福瑞鲤继续选育过程中,进行早期个体选择值得尝试。展开更多
基金supported by the National Natural Science Foundation of China(11326066)the Doctoral Program of Shandong Province(BS2013SF011)+1 种基金the Shandong Province Higher Education Science and Technology Program(J14LI01)the Key Project of Scientific Research Innovation Foundation of Shanghai Municipal Education Commission(13ZZ080)
文摘穗轴粗和出籽率均是典型的数量性状,在不同程度上影响玉米产量。全基因组选择整合全基因组关联分析(GWAS,genome-wide association study)的先验信息是提高性状预测准确性的有效方法。本研究利用309份玉米自交系穗轴粗和出籽率表型和基因分型测序技术获得的基因型数据,研究基因组最佳线性无偏预测(GBLUP,genomic best linear unbiased prediction)、贝叶斯A(Bayes A)和再生核希尔伯特空间(RKHS,reproducing kernel Hilbert space)模型对2种GWAS方法即固定和随机模型交替概率统一(FarmCPU,fixed and random model circulating probability unification)和压缩混合线性模型(CMLM,compressed mixed linear model)衍生的不同数量标记集、随机选择标记集和所有标记对预测准确性的影响。对于2个性状FarmCPU和CMLM衍生标记集,3个预测模型间的预测准确性差异较小,差值变异范围介于0~0.03。对于随机标记集,相比其他2个模型的预测准确性,RKHS对穗轴粗可提高3.57%~15.91%,而3个预测模型对出籽率具有相似的预测效果。除了50和100个标记,3个模型利用CMLM衍生标记对2个性状的预测效果均优于FarmCPU。相比随机标记集,穗轴粗GWAS衍生标记的预测准确性可提高15.52%~88.37%;出籽率利用衍生标记可提高1~5.89倍。所有衍生标记集的预测准确性均高于所有标记。这些结果均表明,全基因组选择整合GWAS衍生标记有利于提高穗轴粗和出籽率的预测准确性。
文摘【目的】为提高豫农黑猪体尺性状遗传参数估计的准确性,加快豫农黑猪选育进展。【方法】利用最佳线性无偏预测(best linear unbiased prediction,BLUP)和基因组最佳线性无偏预测(genomic best linear unbiased prediction,GBLUP)2种方法,构建3个单性状动物模型,即基于BLUP的模型1、基于GBLUP的模型2以及基于包含基因组近交系数GBLUP的模型3,采用平均信息约束性最大似然算法(average information restricted maximum likelihood,AIREML)对702头豫农黑猪体尺性状的遗传参数进行估计。【结果】在遗传参数估计的准确性方面,模型1估计的准确性低于模型2和3;模型3和模型2相比,提高了胸围、腿臀围和眼肌深度性状遗传参数估计的准确性。模型3估计体高、腿臀围、背膘厚和眼肌深度的遗传力为0.566、0.302、0.467和0.652,属于高遗传力性状;体长、胸围和管围的遗传力为0.152、0.122和0.255,属于中遗传力性状。体尺性状间的表型相关系数为-0.009~0.576,遗传相关系数为-0.108~0.985。【结论】在估计豫农黑猪体尺性状遗传参数时,采用近交系数的GBLUP模型可以提高遗传评估的准确性,本研究结果为生产实践中加快遗传进展提供了科学依据。
文摘为了进一步观察最佳线性无偏预测(best linear unbiased prediction,BLUP)家系选育方法在福瑞鲤(Cyprinus carpio)继代选育中的潜力,该研究测量了继续选育第2代家系群体不同养殖阶段的体质量和形态性状。结果表明,生长快速家系群福瑞鲤早期(4月龄)生长速度较慢,到后期则生长加快,其体质量增长表现出明显的优势。在体型方面,随着养殖时间的延长,福瑞鲤各选育家系群的体厚/体长增加,体高/体长降低,逐渐呈现其体型修长的特征;同时2个越冬期的成活率均达到了94%以上。结果表明通过BLUP家系选育对福瑞鲤长期选育是可行的。在此基础上,通过主成分分析发现,福瑞鲤生长性状第一主成分是体质量;对不同生长时期的体质量进行相关性分析,发现9月龄、14月龄、21月龄鱼的体质量与24月龄的相关系数均达到极显著水平(P<0.01),分别为0.851、0.897和0.957。因此,在福瑞鲤继续选育过程中,进行早期个体选择值得尝试。