This paper proposes a high specificity and sensitivity algorithm called PromPredictor for recognizing promoter regions in the human genome. PromPredictor extracts compositional features and CpG islands information fro...This paper proposes a high specificity and sensitivity algorithm called PromPredictor for recognizing promoter regions in the human genome. PromPredictor extracts compositional features and CpG islands information from genomic sequence,feeding these features as input for a hybrid neural network system (HNN) and then applies the HNN for prediction. It combines a novel promoter recognition model, coding theory, feature selection and dimensionality reduction with machine learning algorithm.Evaluation on Human chromosome 22 was ~66% in sensitivity and ~48% in specificity. Comparison with two other systems revealed that our method had superior sensitivity and specificity in predicting promoter regions. PromPredictor is written in MATLAB and requires Matlab to run. PromPredictor is freely available at http://www.whtelecom.com/Prompredictor.htm.展开更多
Modeling genetic regulatory networks is an important research topic in genomic research and computationM systems biology. This paper considers the problem of constructing a genetic regula- tory network (GRN) using t...Modeling genetic regulatory networks is an important research topic in genomic research and computationM systems biology. This paper considers the problem of constructing a genetic regula- tory network (GRN) using the discrete dynamic system (DDS) model approach. Although considerable research has been devoted to building GRNs, many of the works did not consider the time-delay effect. Here, the authors propose a time-delay DDS model composed of linear difference equations to represent temporal interactions among significantly expressed genes. The authors also introduce interpolation scheme and re-sampling method for equalizing the non-uniformity of sampling time points. Statistical significance plays an active role in obtaining the optimal interaction matrix of GRNs. The constructed genetic network using linear multiple regression matches with the original data very well. Simulation results are given to demonstrate the effectiveness of the proposed method and model.展开更多
基金Project (No. 2001AA231071) supported by the Hi-Tech Researchand Development Program (863) of China
文摘This paper proposes a high specificity and sensitivity algorithm called PromPredictor for recognizing promoter regions in the human genome. PromPredictor extracts compositional features and CpG islands information from genomic sequence,feeding these features as input for a hybrid neural network system (HNN) and then applies the HNN for prediction. It combines a novel promoter recognition model, coding theory, feature selection and dimensionality reduction with machine learning algorithm.Evaluation on Human chromosome 22 was ~66% in sensitivity and ~48% in specificity. Comparison with two other systems revealed that our method had superior sensitivity and specificity in predicting promoter regions. PromPredictor is written in MATLAB and requires Matlab to run. PromPredictor is freely available at http://www.whtelecom.com/Prompredictor.htm.
基金Shao Hong-Bo’s laboratoryis jointly supported by National Economic Development Committee of China,SpecializedInitiation Foundation of Excellent Ph.D. Dissertation of Chinese Academy of Sciences, Doctoral Foundation of QUST (0022221)NationalScience&Technology Supporting Plan of China (2006BAC15B03) .
基金supported in part by HKRGC GrantHKU Strategic Theme Grant on Computational SciencesNational Natural Science Foundation of China under Grant Nos.10971075 and 11271144
文摘Modeling genetic regulatory networks is an important research topic in genomic research and computationM systems biology. This paper considers the problem of constructing a genetic regula- tory network (GRN) using the discrete dynamic system (DDS) model approach. Although considerable research has been devoted to building GRNs, many of the works did not consider the time-delay effect. Here, the authors propose a time-delay DDS model composed of linear difference equations to represent temporal interactions among significantly expressed genes. The authors also introduce interpolation scheme and re-sampling method for equalizing the non-uniformity of sampling time points. Statistical significance plays an active role in obtaining the optimal interaction matrix of GRNs. The constructed genetic network using linear multiple regression matches with the original data very well. Simulation results are given to demonstrate the effectiveness of the proposed method and model.