Objective To explore the differential expression and mechanisms of bone formation-related genes in osteoporosis(OP)leveraging bioinformatics and machine learning methodologies;and to predict the active ingredients of ...Objective To explore the differential expression and mechanisms of bone formation-related genes in osteoporosis(OP)leveraging bioinformatics and machine learning methodologies;and to predict the active ingredients of targeted traditional Chinese medicine(TCM)herbs.Methods The Gene Expression Omnibus(GEO)and GeneCards databases were employed to conduct a comprehensive screening of genes and disease-associated loci pertinent to the pathogenesis of OP.The R package was utilized as the analytical tool for the identification of differentially expressed genes.Least absolute shrinkage and selection operator(LASSO)logis-tic regression analysis and support vector machine-recursive feature elimination(SVM-RFE)algorithm were employed in defining the genetic signature specific to OP.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analyses for the selected pivotal genes were conducted.The cell-type identification by estimating rela-tive subsets of RNA transcripts(CIBERSORT)algorithm was leveraged to examine the infiltra-tion patterns of immune cells;with Spearman’s rank correlation analysis utilized to assess the relationship between the expression levels of the genes and the presence of immune cells.Coremine Medical Database was used to screen out potential TCM herbs for the treatment of OP.Comparative Toxicogenomics Database(CTD)was employed for forecasting the TCM ac-tive ingredients targeting the key genes.AutoDock Vina 1.2.2 and GROMACS 2020 softwares were employed to conclude analysis results;facilitating the exploration of binding affinity and conformational dynamics between the TCM active ingredients and their biological targets.Results Ten genes were identified by intersecting the results from the GEO and GeneCards databases.Through the application of LASSO regression and SVM-RFE algorithm;four piv-otal genes were selected:coat protein(CP);kallikrein 3(KLK3);polymeraseγ(POLG);and transient receptor potential vanilloid 4(TRPV4).GO and KEGG pathway enrichment analy-ses revealed that these trait genes were predominantly engaged in the regulation of defense response activation;maintenance of cellular metal ion balance;and the production of chemokine ligand 5.These genes were notably associated with signaling pathways such as ferroptosis;porphyrin metabolism;and base excision repair.Immune infiltration analysis showed that key genes were highly correlated with immune cells.Macrophage M0;M1;M2;and resting dendritic cell were significantly different between groups;and there were signifi-cant differences between different groups(P<0.05).The interaction counts of resveratrol;curcumin;and quercetin with KLK3 were 7;3;and 2;respectively.It shows that the interac-tions of resveratrol;curcumin;and quercetin with KLK3 were substantial.Molecular docking and molecular dynamics simulations further confirmed the robust binding affinity of these bioactive compounds to the target genes.Conclusion Pivotal genes including CP;KLK3;POLG;and TRPV4;exhibited commendable significant prognostic value;and played a crucial role in the diagnostic assessment of OP.Resveratrol;curcumin;and quercetin;natural compounds found in TCM;showed promise in their potential to effectively modulate the bone-forming gene KLK3.This study provides a sci-entific basis for the interpretation of the pathogenesis of OP and the development of clinical drugs.展开更多
[Objective] The paper was to explore the regularity between heat shock protein expression and the healthiness changes of Bombyx moil materials. [Method] The representative heat shock protein gene Bmhsp24.3 was screene...[Objective] The paper was to explore the regularity between heat shock protein expression and the healthiness changes of Bombyx moil materials. [Method] The representative heat shock protein gene Bmhsp24.3 was screened by bioinfor- matic analysis method, and carried out real-time PCR expression analysis. [Result] The target gene Bmhsp24.3 expressed in different B. mori materials, but the expres- sion level in different materials significantly varied. The relative expression level of the gene had different degrees of changes under different rearing conditions. With the increase of rearing temperature, the gene expression was upregulated. The ma- terials with better healthiness had remarkable increase in expression of target gene, while the materials with poorer healthiness had less increase in expression of target gene. The expression difference of target gene Bmhsp24.3 was exactly consistent with the healthiness of breeds. [Conclusion] The healthiness of materials had rela- tionship with expression of target gene Bmhsp24.3. the higher the expression of tar- get gene Bmhsp24.3 was, the better the healthiness of materials was; conversely, the lower the expression of target gene Bmhsp24.3 was, the poorer the healthiness of materials was.展开更多
[Objective] The purpose of this study was to clone a starch phosphorylase gene from Dunaliella salina and to preliminarily analyze its basic properties and protein expression. [Method] RT-PCR and RACE (rapid amplific...[Objective] The purpose of this study was to clone a starch phosphorylase gene from Dunaliella salina and to preliminarily analyze its basic properties and protein expression. [Method] RT-PCR and RACE (rapid amplification of cDNA ends) method was used for gene cloning; basic properties of the gene were analyzed using bioinformatics method; prokaryotic expression vector PGS21a-DsSP was constructed and transformed into E. coil BL21; the fusion protein was purified and detected by GST-SefinoseTM Kit and Western Blot, respectively. [Result] A starch phos-phorylase gene (GenBank accession No. KF061044) named DsSP was successfully isolated from D. salina. Basic properties, subcellular localization, secondary structure and tertiary structure of the protein were analyzed and predicted. The fusion protein was found in the supernatant and inclusion bodies. The supernatant protein was successfully purified. Western Blot analysis showed that the fusion protein was successfully expressed in E. coil BL21. [Conclusion] This study laid experimental foun- dation for further clarifying the function and mechanism of DsSP.展开更多
Jumonji, AT-rich interactive domain 1C (JARID1C) protein belongs to the highly conserved ARID protein family, which is involved in chromatin remodeling and transcriptional regulation during cell growth, differentiat...Jumonji, AT-rich interactive domain 1C (JARID1C) protein belongs to the highly conserved ARID protein family, which is involved in chromatin remodeling and transcriptional regulation during cell growth, differentiation, and development. In humans, this gene plays a vital role in normal brain development and function. Using an in silico approach in combination with 5' rapid amplification of cDNA ends (5' RACE), the full-length cDNA of JARIDIC (GenBank accession No. EF139241) from porcine ovary, which contains 5,908 bp nucleotides, with an open reading frame (ORF) of 4,548 bp, has been cloned. The putative porcine JARID 1C protein, which is located in the nucleus, encodes 1,516 amino acids with a molecular weight of 170 kDa and a pI of 5.44. Bioinformatic prediction indicates that the protein contains several conserved domains: a JmjN domain, an ARID domain, a JmjC domain, a C5HC2 zinc finger domain, and a PHD zinc finger domain. Similarity comparisons for nucleic and amino acid sequences reveal that the porcine JARID1C protein shares a high identity with its dog, mouse, rat, and human counterparts. The phylogenetic tree of the JARID1 subfamily proteins has been constructed to reveal the evolutionary relationship of various species. Real-time PCR analysis shows that the JARIDIC gene is expressed in various tissues, but at different levels. The expression levels of this gene are higher in the brain and gonad than in other tissues, suggesting that the JARID1C protein plays a role in porcine brain and gonad functions.展开更多
Objective Various treatments have greatly reduced the mortality of hepatocellular carcinoma (HCC). However, few therapies could be performed in advanced HCC. Therefore, understanding the characteristics of HCC at th...Objective Various treatments have greatly reduced the mortality of hepatocellular carcinoma (HCC). However, few therapies could be performed in advanced HCC. Therefore, understanding the characteristics of HCC at the level of the whole transcriptome can help prevent the progression of HCC. Methods: The aim of this study was to identify differently expressed genes and potent pathways between normal liver and HCC tissues. The gene expression profiles of GSE104627 were downloaded from Gene Expression Omnibus database. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed and protein-protein interaction network of the differentially expressed genes were constructed by Cytoscape software. Results: In total, 880 differently expressed genes were identified between normal and tumor tissues, including 554 up-regulated genes and 326 down-regulated genes. Gene Ontology analysis results showed that the up-regulated genes were significantly enriched in establishment of RNA localization, nucleic acid transport, RNA transport, RNA localization and nucleobase, nucleoside, nucleotide and nucleic acid transport. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed the up-regulated genes were enriched in axon guidance, dorso-ventral axis formation and pathways in cancer. The top 10 hub genes were identified from the protein - protein interaction network, and sub-networks revealed these genes were involved in significant pathways, including G protein-coupled receptors signaling pathway, signaling pathway via MAPK and extracellular matrix organization. Conclusion: The present study described the differently expressed genes between normal tissues and HCC tissues from the level of gene transcription. The possible signaling pathways involved in the development of HCC and related molecules involved were analyzed. However, further laboratory and clinical validation is still needed.展开更多
Through the widespread implementation of next-generation sequencing (NGS), analyses of the whole genome (the entire DNA content) and the whole transcriptome (the genes being expressed) are becoming commonplace. ...Through the widespread implementation of next-generation sequencing (NGS), analyses of the whole genome (the entire DNA content) and the whole transcriptome (the genes being expressed) are becoming commonplace. NGS enables the analysis of a vast amount of previously unattainable genetic information. Despite this potential, NGS has yet to be widely imple- mented in genetic studies of biological invasions. The study of the genomic causes and consequences of biological invasions al- lows a deeper understanding of the molecular mechanisms underpinning the invasion process. In this review, we present a brief introduction to NGS followed by a synthesis of current research in the genomics and transcriptomics of adaptation and coloniza- tion. We then highlight research opportunities in the field, including: (1) assembling genomes and transcriptomes of non-model organisms, (2) identifying genomic regions and candidate genes underlying evolutionary processes, and (3) studying the adaptive role of gene expression variation. In particular, because introduced species face a broad range of physiological and biotic chal- lenges when colonizing novel and variable environments, transcriptomics will enable the study of gene regulatory pathways that may be responsible for acclimation or adaptation. To conclude, we identify a number of research approaches that will aid our fu- ture understanding of biological invasions展开更多
基金National Natural Science Foundation of China(81960877).
文摘Objective To explore the differential expression and mechanisms of bone formation-related genes in osteoporosis(OP)leveraging bioinformatics and machine learning methodologies;and to predict the active ingredients of targeted traditional Chinese medicine(TCM)herbs.Methods The Gene Expression Omnibus(GEO)and GeneCards databases were employed to conduct a comprehensive screening of genes and disease-associated loci pertinent to the pathogenesis of OP.The R package was utilized as the analytical tool for the identification of differentially expressed genes.Least absolute shrinkage and selection operator(LASSO)logis-tic regression analysis and support vector machine-recursive feature elimination(SVM-RFE)algorithm were employed in defining the genetic signature specific to OP.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analyses for the selected pivotal genes were conducted.The cell-type identification by estimating rela-tive subsets of RNA transcripts(CIBERSORT)algorithm was leveraged to examine the infiltra-tion patterns of immune cells;with Spearman’s rank correlation analysis utilized to assess the relationship between the expression levels of the genes and the presence of immune cells.Coremine Medical Database was used to screen out potential TCM herbs for the treatment of OP.Comparative Toxicogenomics Database(CTD)was employed for forecasting the TCM ac-tive ingredients targeting the key genes.AutoDock Vina 1.2.2 and GROMACS 2020 softwares were employed to conclude analysis results;facilitating the exploration of binding affinity and conformational dynamics between the TCM active ingredients and their biological targets.Results Ten genes were identified by intersecting the results from the GEO and GeneCards databases.Through the application of LASSO regression and SVM-RFE algorithm;four piv-otal genes were selected:coat protein(CP);kallikrein 3(KLK3);polymeraseγ(POLG);and transient receptor potential vanilloid 4(TRPV4).GO and KEGG pathway enrichment analy-ses revealed that these trait genes were predominantly engaged in the regulation of defense response activation;maintenance of cellular metal ion balance;and the production of chemokine ligand 5.These genes were notably associated with signaling pathways such as ferroptosis;porphyrin metabolism;and base excision repair.Immune infiltration analysis showed that key genes were highly correlated with immune cells.Macrophage M0;M1;M2;and resting dendritic cell were significantly different between groups;and there were signifi-cant differences between different groups(P<0.05).The interaction counts of resveratrol;curcumin;and quercetin with KLK3 were 7;3;and 2;respectively.It shows that the interac-tions of resveratrol;curcumin;and quercetin with KLK3 were substantial.Molecular docking and molecular dynamics simulations further confirmed the robust binding affinity of these bioactive compounds to the target genes.Conclusion Pivotal genes including CP;KLK3;POLG;and TRPV4;exhibited commendable significant prognostic value;and played a crucial role in the diagnostic assessment of OP.Resveratrol;curcumin;and quercetin;natural compounds found in TCM;showed promise in their potential to effectively modulate the bone-forming gene KLK3.This study provides a sci-entific basis for the interpretation of the pathogenesis of OP and the development of clinical drugs.
基金Supported by Youth Fund of Provincial Finance for Breeding Project(2010QNJJ-023)Fund Project of Agricultural Science and Technology Achievement Conversion(2010F00080)Science and Technology Supporting Project of Nanchong City(11A0016)~~
文摘[Objective] The paper was to explore the regularity between heat shock protein expression and the healthiness changes of Bombyx moil materials. [Method] The representative heat shock protein gene Bmhsp24.3 was screened by bioinfor- matic analysis method, and carried out real-time PCR expression analysis. [Result] The target gene Bmhsp24.3 expressed in different B. mori materials, but the expres- sion level in different materials significantly varied. The relative expression level of the gene had different degrees of changes under different rearing conditions. With the increase of rearing temperature, the gene expression was upregulated. The ma- terials with better healthiness had remarkable increase in expression of target gene, while the materials with poorer healthiness had less increase in expression of target gene. The expression difference of target gene Bmhsp24.3 was exactly consistent with the healthiness of breeds. [Conclusion] The healthiness of materials had rela- tionship with expression of target gene Bmhsp24.3. the higher the expression of tar- get gene Bmhsp24.3 was, the better the healthiness of materials was; conversely, the lower the expression of target gene Bmhsp24.3 was, the poorer the healthiness of materials was.
基金Supported by National Natural Science Foundation of China(No.30972240)Science and Technology Project of Liaoning Provincial Department of Education(No.2008T023)~~
文摘[Objective] The purpose of this study was to clone a starch phosphorylase gene from Dunaliella salina and to preliminarily analyze its basic properties and protein expression. [Method] RT-PCR and RACE (rapid amplification of cDNA ends) method was used for gene cloning; basic properties of the gene were analyzed using bioinformatics method; prokaryotic expression vector PGS21a-DsSP was constructed and transformed into E. coil BL21; the fusion protein was purified and detected by GST-SefinoseTM Kit and Western Blot, respectively. [Result] A starch phos-phorylase gene (GenBank accession No. KF061044) named DsSP was successfully isolated from D. salina. Basic properties, subcellular localization, secondary structure and tertiary structure of the protein were analyzed and predicted. The fusion protein was found in the supernatant and inclusion bodies. The supernatant protein was successfully purified. Western Blot analysis showed that the fusion protein was successfully expressed in E. coil BL21. [Conclusion] This study laid experimental foun- dation for further clarifying the function and mechanism of DsSP.
基金the National High Technology Development Program of China (No. 2006AA10Z136).
文摘Jumonji, AT-rich interactive domain 1C (JARID1C) protein belongs to the highly conserved ARID protein family, which is involved in chromatin remodeling and transcriptional regulation during cell growth, differentiation, and development. In humans, this gene plays a vital role in normal brain development and function. Using an in silico approach in combination with 5' rapid amplification of cDNA ends (5' RACE), the full-length cDNA of JARIDIC (GenBank accession No. EF139241) from porcine ovary, which contains 5,908 bp nucleotides, with an open reading frame (ORF) of 4,548 bp, has been cloned. The putative porcine JARID 1C protein, which is located in the nucleus, encodes 1,516 amino acids with a molecular weight of 170 kDa and a pI of 5.44. Bioinformatic prediction indicates that the protein contains several conserved domains: a JmjN domain, an ARID domain, a JmjC domain, a C5HC2 zinc finger domain, and a PHD zinc finger domain. Similarity comparisons for nucleic and amino acid sequences reveal that the porcine JARID1C protein shares a high identity with its dog, mouse, rat, and human counterparts. The phylogenetic tree of the JARID1 subfamily proteins has been constructed to reveal the evolutionary relationship of various species. Real-time PCR analysis shows that the JARIDIC gene is expressed in various tissues, but at different levels. The expression levels of this gene are higher in the brain and gonad than in other tissues, suggesting that the JARID1C protein plays a role in porcine brain and gonad functions.
文摘Objective Various treatments have greatly reduced the mortality of hepatocellular carcinoma (HCC). However, few therapies could be performed in advanced HCC. Therefore, understanding the characteristics of HCC at the level of the whole transcriptome can help prevent the progression of HCC. Methods: The aim of this study was to identify differently expressed genes and potent pathways between normal liver and HCC tissues. The gene expression profiles of GSE104627 were downloaded from Gene Expression Omnibus database. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed and protein-protein interaction network of the differentially expressed genes were constructed by Cytoscape software. Results: In total, 880 differently expressed genes were identified between normal and tumor tissues, including 554 up-regulated genes and 326 down-regulated genes. Gene Ontology analysis results showed that the up-regulated genes were significantly enriched in establishment of RNA localization, nucleic acid transport, RNA transport, RNA localization and nucleobase, nucleoside, nucleotide and nucleic acid transport. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed the up-regulated genes were enriched in axon guidance, dorso-ventral axis formation and pathways in cancer. The top 10 hub genes were identified from the protein - protein interaction network, and sub-networks revealed these genes were involved in significant pathways, including G protein-coupled receptors signaling pathway, signaling pathway via MAPK and extracellular matrix organization. Conclusion: The present study described the differently expressed genes between normal tissues and HCC tissues from the level of gene transcription. The possible signaling pathways involved in the development of HCC and related molecules involved were analyzed. However, further laboratory and clinical validation is still needed.
文摘Through the widespread implementation of next-generation sequencing (NGS), analyses of the whole genome (the entire DNA content) and the whole transcriptome (the genes being expressed) are becoming commonplace. NGS enables the analysis of a vast amount of previously unattainable genetic information. Despite this potential, NGS has yet to be widely imple- mented in genetic studies of biological invasions. The study of the genomic causes and consequences of biological invasions al- lows a deeper understanding of the molecular mechanisms underpinning the invasion process. In this review, we present a brief introduction to NGS followed by a synthesis of current research in the genomics and transcriptomics of adaptation and coloniza- tion. We then highlight research opportunities in the field, including: (1) assembling genomes and transcriptomes of non-model organisms, (2) identifying genomic regions and candidate genes underlying evolutionary processes, and (3) studying the adaptive role of gene expression variation. In particular, because introduced species face a broad range of physiological and biotic chal- lenges when colonizing novel and variable environments, transcriptomics will enable the study of gene regulatory pathways that may be responsible for acclimation or adaptation. To conclude, we identify a number of research approaches that will aid our fu- ture understanding of biological invasions