期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
面向吨钢综合能耗预测的基因表达式编程方法 被引量:1
1
作者 张利平 唐秋华 +1 位作者 C.A.Floudas 邓明星 《机械设计与制造》 北大核心 2017年第2期176-179,共4页
钢铁是国民经济的基础用材,我国吨钢综合能耗仍与发达国家存在较大差距。准确预测吨钢综合能耗,有利于制定节能方针和减少能源浪费。根据我国钢铁工业吨钢综合能耗历史数据,利用基因表达式编程(Gene Expression Programming,GEP)算法,... 钢铁是国民经济的基础用材,我国吨钢综合能耗仍与发达国家存在较大差距。准确预测吨钢综合能耗,有利于制定节能方针和减少能源浪费。根据我国钢铁工业吨钢综合能耗历史数据,利用基因表达式编程(Gene Expression Programming,GEP)算法,构建吨钢综合能耗预测模型。首先,将吨钢综合能耗进行等间隔时序化、函数表达式符号化,在终端集中添加常量数组;其次,利用选择操作、变异操作、重组操作和移项操作进行遗传操作,获得吨钢综合能耗预测模型。结果表明,基于GEP的预测值与实测值平均误差为0.31,该模型较准确地预测我国钢铁工业吨钢综合能耗发展趋势。 展开更多
关键词 综合能耗 基因表达式编程:预测方法 模型
下载PDF
基于启发式和基因表达式编程法预测磺胺类药物的pKa值 被引量:3
2
作者 李玉琴 司宏宗 +4 位作者 肖玉良 刘彩红 夏成才 李珂 齐永秀 《药学学报》 CAS CSCD 北大核心 2009年第5期486-490,共5页
应用启发式算法(HM)和基因表达式编程方法(GEP)建立了31种磺胺类药物pKa值的定量构效关系模型。用ChemOffice2004软件进行化合物的结构输入,利用半经验方法进行分子结构优化,在CODDESA软件中计算出组成、拓扑、几何、电子和量子化学参数... 应用启发式算法(HM)和基因表达式编程方法(GEP)建立了31种磺胺类药物pKa值的定量构效关系模型。用ChemOffice2004软件进行化合物的结构输入,利用半经验方法进行分子结构优化,在CODDESA软件中计算出组成、拓扑、几何、电子和量子化学参数,并用启发式方法筛选出4个相关参数,在此基础上运用多元线性回归和基因表达式编程方法建立QSPR模型。两种方法均得到了较好的结果,HM和GEP的的相关系数分别为0.90和0.95。两种QSPR模型在新药研究中可以预测化合物的pKa值,将为新药研究提供理论指导。 展开更多
关键词 磺胺类药物 PKA 定量构效关系 启发式算法 基因表达式编程方法
原文传递
Settlement modeling in central core rockfill dams by new approaches 被引量:2
3
作者 Behnia D. Ahangari K. +2 位作者 Goshtasbi K. Moeinossadat S.R. Behnia M. 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第4期703-710,共8页
One of the most important reasons for the serious damage of embankment dams is their impermissible settlement.Therefore,it can be stated that the prediction of settlement of a dam is of paramount importance.This study... One of the most important reasons for the serious damage of embankment dams is their impermissible settlement.Therefore,it can be stated that the prediction of settlement of a dam is of paramount importance.This study aims to apply intelligent methods to predict settlement after constructing central core rockfill dams.Attempts were made in this research to prepare models for predicting settlement of these dams using the information of 35 different central core rockfill dams all over the world and Adaptive Neuro-Fuzzy Interface System(ANFIS) and Gene Expression Programming(GEP) methods.Parameters such as height of dam(H) and compressibility index(Ci) were considered as the input parameters.Finally,a form was designed using visual basic software for predicting dam settlement.With respect to the accuracy of the results obtained from the intelligent methods,they can be recommended for predicting settlement after constructing central core rockfill dams for the future plans. 展开更多
关键词 Settlement Adaptive Neuro-Fuzzy Interface System(ANFIS)Gene Expression Programming (GEP)Visual Basic (VB)
下载PDF
Predicting crest settlement in concrete face rockfill dams using adaptive neuro-fuzzy inference system and gene expression programming intelligent methods 被引量:6
4
作者 Danial BEHNIA Kaveh AHANGARI +1 位作者 Ali NOORZAD Sayed Rahim MOEINOSSADAT 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2013年第8期589-602,共14页
This paper deals with the estimation of crest settlement in a concrete face rockfill dam (CFRD), utilizing intelligent methods. Following completion of dam construction, considerable movements of the crest and the b... This paper deals with the estimation of crest settlement in a concrete face rockfill dam (CFRD), utilizing intelligent methods. Following completion of dam construction, considerable movements of the crest and the body of the dam can develop during the first impoundment of the reservoir. Although there is vast experience worldwide in CFRD design and construction, few accurate experimental relationships are available to predict the settlement in CFRD. The goal is to advance the development of intelligent methods to estimate the subsidence of dams at the design stage. Due to dam zonifieation and uncertainties in material properties, these methods appear to be the appropriate choice. In this study, the crest settlement behavior of CFRDs is analyzed based on compiled data of 24 CFRDs constructed during recent years around the world, along with the utilization of gene ex- pression programming (GEP) and adaptive neuro-fuzzy inference system (ANFIS) methods. In addition, dam height (H), shape factor (St), and time (t, time after first operation) are also assessed, being considered major factors in predicting the settlement behavior. From the relationships proposed, the values ofR2 for both equations of GEP (with and without constant) were 0.9603 and 0.9734, and for the three approaches of ANFIS (grid partitioning (GP), subtractive clustering method (SCM), and fuzzy c-means clustering (FCM)) were 0.9693, 0.8657, and 0.8848, respectively. The obtained results indicate that the overall behavior evaluated by this approach is consistent with the measured data of other CFRDs. 展开更多
关键词 Concrete face rockfill dam (CFRD) Crest settlement Adaptive neuro-fuzzy inference system (ANFIS) Geneexpression programming (GEP)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部