AIM:To characterize the differentially expressed gene profiles in livers from biliary atresia (BA) patients including,ascertain genes,functional categories and pathways that play a central role in the pathogenesis of ...AIM:To characterize the differentially expressed gene profiles in livers from biliary atresia (BA) patients including,ascertain genes,functional categories and pathways that play a central role in the pathogenesis of BA,and identify the novel prognostic markers for BA.METHODS:Liver tissue samples from control patients,neonatal cholestasis patients,and BA patients at the age of < 60 d,60-90 d,and > 90 d were pooled for DNA microarray analysis.Bioinformatics analysis was performed using,series test cluster of gene ontology,and Pathway-Finder software.Reverse-transcription polymerase chain reaction was performed to confirm changes in selected genes.Relation between RRAS gene expression and prognosis of 40 BA patients was analyzed in a 2-year follow-up study.RESULTS:The 4 identified significant gene expression profiles could confidently separate BA liver tissue from normal and other diseased liver tissues.The included genes were mainly involved in inflammation response and reconstruction of cellular matrix.The significant pathways associated with BA were primarily involved in autoimmune response,activation of T lymphocytes and its related cytokines.The RRAS,POMC,SLC26A6 and STX3 genes were important regulatory modules in pathogenesis of BA.The expression of RRAS was negatively correlated with the elimination rate of jaundice and positively correlated with the occurrence rate of cholangitis.CONCLUSION:Autoimmune response mediated by T lymphocytes may play a vital role in the pathogenesis of BA.The RRAS gene is an important regulatory module in the pathogenesis of BA,which may serve as a novel prognostic marker for BA.展开更多
AIM: To explore the expression of apoptosis-regulatinggenes C-jun and Bcl-XL after normothermic liver ischemic preconditioning and its protective effect on hepatocytes in the rat.METHODS: Wistar rats are randomly divi...AIM: To explore the expression of apoptosis-regulatinggenes C-jun and Bcl-XL after normothermic liver ischemic preconditioning and its protective effect on hepatocytes in the rat.METHODS: Wistar rats are randomly divided into sham operation group (S group, n = 10), ischemic reperfusion group (IR group, n = 10) and ischemic preconditioning group (IP group, n = 10). After dissection of the hepatoduodenal ligament in S group, and after 30-min reperfusion in IR group and in IP group, the samples of liver tissue were taken for studying the hepatocellular apoptosis, theexpressions of C-jun mRNA, Bcl-XL mRNA and their proteins, and morphologic changes at 0, 3, 6, 20 h. Meanwhile the venous blood samples were drawn at 3, 6 and 20 h for testing ALT, AST and LDH.RESULTS: The levels of ALT, AST and LDH in IR group and IP group were significantly higher than those in S group. Hepatocellular apoptosis was significantly increased in both IR group and IP group, especially in IR group.Expressions of C-jun mRNA and protein were significantly increased in IR group compared with those in both IP group and S group, but no significant difference between IP group and S group (P>0.05). Expressions of Bcl-XL mRNA and protein in IR group and S group were not significant (P>0.05), but were significantly increased in IP group compared with those in both S group and IR group. Patch necrosis of hepatocytes because of severe injury could be seen in IR group microscopically, and the ultrastructural changes were irreversible. Meanwhile in IP group, no hepatocellular necrosis occurred, and the ultrastructural changes were reversible because of mild injury. CONCLUSION: (1) IP can protect the rat liver from normothermic IR injury by modulation of the expressionof apoptosis-regulating genes C-jun and Bcl-XL; (2) IR injury may activate the apoptosis of hepatocytes by increasing the expression of apoptosis-inducing gene C-jun; (3) IP may prohibit the apoptosis of hepatocytes by increasing the expression of apoptosis-inhibitory gene Bcl-XL.展开更多
Interleukin-4 is a cytokine produced by activated T cells, mast cells, and basophils that elicits many important biological responses[1] (see Tab 1). These responses range from the regulation of helper T cell differen...Interleukin-4 is a cytokine produced by activated T cells, mast cells, and basophils that elicits many important biological responses[1] (see Tab 1). These responses range from the regulation of helper T cell differentiation[2] and the production of IgE[3] to the regulation of the adhesive properties of endothelial cells via VCAM-1[4]. In keeping with these diverse biological effects, high-affinity binding sites for IL-4 (Kd 20 to 300 pM) have been detected on many hematopoietic and non-hematopoietic cell types at levels ranging from 50 to 5000 sites per cell[5],This review will focus on the discrete signal transduction pathways activated by the IL-4 receptor and the coordination of these individual pathways in the regulation of a final biological outcome.展开更多
The performance of wxtaraguiatory senescence-inhibition gene PSAG12-IPT in nee has been investigated in the study.422 tranagenic plants from 134 independent resistant calli were obtained from 4 rice varieties through ...The performance of wxtaraguiatory senescence-inhibition gene PSAG12-IPT in nee has been investigated in the study.422 tranagenic plants from 134 independent resistant calli were obtained from 4 rice varieties through Agrobacterium-mediated transformation.Among them,233 were positive PSAGIZ^IPT tranagenic plants identified by GUS histochemical assay and PCR analysis.Southern analysis showed the transgene was randomly integrated into rice genome,of which 42.29% was single copy.Investigations on photosynthesis function and agronomic characters of Rt generation showed that chlorophy Ⅱ content and photosynthesis rate of flag leaves in tranagenic plants,were 41.23% and 60.24% higher than the control wild-type rice,respectively.The growth duration and plant height of the tranagenic plants were similar to the control.Variations of other characters were dependent on the varieties.For the variety Millin with significant aging phenomenon in China,its total grains per hill,its seed setting rate and 1000-grain weight were increased by 40.44%,8.05% and 8.32% respectively.The results indicated that after leaf senescence of varieties liable to age was delayed,the seed setting rate and the filling degree of seeds were improved,which finally resulted in significantly increased seed yield and taomaas per hill.The new variety Wuyujing 2 without serious aging problem,was also increased in the panicles per hill,the total grains per hill,the seed yield per hill and biomass in different degrees.展开更多
Advances in functional genomics have led to discovery of a large group of previous uncharacterized long non-coding RNAs (IncRNAs). Emerging evidence indicates that IncRNAs may serve as master gene regulators through...Advances in functional genomics have led to discovery of a large group of previous uncharacterized long non-coding RNAs (IncRNAs). Emerging evidence indicates that IncRNAs may serve as master gene regulators through various mechanisms. Dysregulation of IncRNAs is often associated with a variety of human diseases including cancer. Of significant interest, recent studies suggest that IncRNAs participate in the p53 tumor suppressor regulatory network. In this review, we discuss how IncRNAs serve as p53 regulators or p53 effectors. Further characterization of these p53-associated IncRNAs in cancer will provide a better understanding of lncRNA- mediated gene regulation in the p53 pathway. As a result, IncRNAs may prove to be valuable biomarkers for cancer diagnosis or poten- tial targets for cancer therapy.展开更多
Agricultural production systems are immensely exposed to different environmental stresses in which heavy metal stress receives serious concerns. This study was conducted to explore the deleterious effects of different...Agricultural production systems are immensely exposed to different environmental stresses in which heavy metal stress receives serious concerns. This study was conducted to explore the deleterious effects of different chromium (Cr) stress levels, i.e., O, 30, 60, 90, 120, and 150 μmol L^-1, on two maize genotypes, Wandan 13 and Runnong 35. Both genotypes were evaluated by measuring their growth and yield characteristics, Cr accumulation in different plant tissues, alterations in osmolyte accumulation, generation of reactive oxygen species (ROS), and anti-oxidative enzyme activity to scavenge ROS. The results showed that Cr stress decreased the leaf area, cob formation, 100-grain weight, shoot fresh biomass, and yield formation, while Cr accumulation in different maize tissues was found in the order of roots 〉 leaves 〉 stem ~ seeds in both genotypes. The increased Cr toxicity resulted in higher free proline, soluble sugars and total phenolic contents, and lower soluble protein contents. However, enhanced lipid peroxidation was noticed in the forms of malondialdehyde, hydrogen peroxide (H2O2) and thiobarbituric acid reactive substance accumulation, and electrolyte leakage. The hyperactivity of superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, especially glutathione peroxidase and glutathione reductase indicated that these anti-oxidative enzymes had a central role in protecting maize from Cr toxicity, especially for Wandan 13. Moreover, higher uptake and less translocation of Cr contents into the grains of Wandan 13 implied its importance as a potential candidate against soil Cr pollution.展开更多
Artemisinin, the key ingredient of first-line antimalarial drugs, has large demand every year. The native plant, which produces small quantities of artemisinin, remains as its main source and thus results in a short s...Artemisinin, the key ingredient of first-line antimalarial drugs, has large demand every year. The native plant, which produces small quantities of artemisinin, remains as its main source and thus results in a short supply of artemisinin. Intensified efforts have been carried out to elevate artemisinin production. However, the routine metabolic engineering strategy, via overexpressing or down-regulating genes in artemisinin biosynthesis branch pathways, was not very effective as desired. Glandular secretory trichomes, sites of artemisinin biosynthesis on the surface of Artemisia annua L.(A. annua), are the new target for increasing artemisinin yield. In general, the population and morphology of glandular secretory trichomes in A. annua(Aa GSTs) are often positively correlated with artemisinin content. Improved understanding of Aa GSTs will shed light on the opportunities for increasing plant-derived artemisinin. This review article will refresh classification of trichomes in A. annua and provide an overview of the recent achievements regarding Aa GSTs and artemisinin. To have a full understanding of Aa GSTs,factors that are associated with trichome morphology and density will have to be further investigated, such as genes,micro RNAs and phytohormones. The purpose of thisreview was to(1) update the knowledge of the relation between Aa GSTs and artemisinin, and(2) propose new avenues to increase artemisinin yield by harnessing the potential biofactories, Aa GSTs.展开更多
Commercial varieties of transgenic Bacillus thuringiensis (Bt) plants have been developed in many countries to control target pests. Initially, the expression of native Bt genes in plants was low due to mRNA insta...Commercial varieties of transgenic Bacillus thuringiensis (Bt) plants have been developed in many countries to control target pests. Initially, the expression of native Bt genes in plants was low due to mRNA instability, improper splicing, and post translation modifications. Subsequently, modifications of the native Bt genes greatly enhanced expression levels. This is a review of the developments that made modern high expression transgenic Bt plants possible, with an emphasis on the reasons for the low level expression of native Bt genes in plant systems, and the techniques that have been used to improve plant expression of Bt toxin genes.展开更多
基金Supported by National Natural Science Foundation of China,No.30973139
文摘AIM:To characterize the differentially expressed gene profiles in livers from biliary atresia (BA) patients including,ascertain genes,functional categories and pathways that play a central role in the pathogenesis of BA,and identify the novel prognostic markers for BA.METHODS:Liver tissue samples from control patients,neonatal cholestasis patients,and BA patients at the age of < 60 d,60-90 d,and > 90 d were pooled for DNA microarray analysis.Bioinformatics analysis was performed using,series test cluster of gene ontology,and Pathway-Finder software.Reverse-transcription polymerase chain reaction was performed to confirm changes in selected genes.Relation between RRAS gene expression and prognosis of 40 BA patients was analyzed in a 2-year follow-up study.RESULTS:The 4 identified significant gene expression profiles could confidently separate BA liver tissue from normal and other diseased liver tissues.The included genes were mainly involved in inflammation response and reconstruction of cellular matrix.The significant pathways associated with BA were primarily involved in autoimmune response,activation of T lymphocytes and its related cytokines.The RRAS,POMC,SLC26A6 and STX3 genes were important regulatory modules in pathogenesis of BA.The expression of RRAS was negatively correlated with the elimination rate of jaundice and positively correlated with the occurrence rate of cholangitis.CONCLUSION:Autoimmune response mediated by T lymphocytes may play a vital role in the pathogenesis of BA.The RRAS gene is an important regulatory module in the pathogenesis of BA,which may serve as a novel prognostic marker for BA.
文摘AIM: To explore the expression of apoptosis-regulatinggenes C-jun and Bcl-XL after normothermic liver ischemic preconditioning and its protective effect on hepatocytes in the rat.METHODS: Wistar rats are randomly divided into sham operation group (S group, n = 10), ischemic reperfusion group (IR group, n = 10) and ischemic preconditioning group (IP group, n = 10). After dissection of the hepatoduodenal ligament in S group, and after 30-min reperfusion in IR group and in IP group, the samples of liver tissue were taken for studying the hepatocellular apoptosis, theexpressions of C-jun mRNA, Bcl-XL mRNA and their proteins, and morphologic changes at 0, 3, 6, 20 h. Meanwhile the venous blood samples were drawn at 3, 6 and 20 h for testing ALT, AST and LDH.RESULTS: The levels of ALT, AST and LDH in IR group and IP group were significantly higher than those in S group. Hepatocellular apoptosis was significantly increased in both IR group and IP group, especially in IR group.Expressions of C-jun mRNA and protein were significantly increased in IR group compared with those in both IP group and S group, but no significant difference between IP group and S group (P>0.05). Expressions of Bcl-XL mRNA and protein in IR group and S group were not significant (P>0.05), but were significantly increased in IP group compared with those in both S group and IR group. Patch necrosis of hepatocytes because of severe injury could be seen in IR group microscopically, and the ultrastructural changes were irreversible. Meanwhile in IP group, no hepatocellular necrosis occurred, and the ultrastructural changes were reversible because of mild injury. CONCLUSION: (1) IP can protect the rat liver from normothermic IR injury by modulation of the expressionof apoptosis-regulating genes C-jun and Bcl-XL; (2) IR injury may activate the apoptosis of hepatocytes by increasing the expression of apoptosis-inducing gene C-jun; (3) IP may prohibit the apoptosis of hepatocytes by increasing the expression of apoptosis-inhibitory gene Bcl-XL.
文摘Interleukin-4 is a cytokine produced by activated T cells, mast cells, and basophils that elicits many important biological responses[1] (see Tab 1). These responses range from the regulation of helper T cell differentiation[2] and the production of IgE[3] to the regulation of the adhesive properties of endothelial cells via VCAM-1[4]. In keeping with these diverse biological effects, high-affinity binding sites for IL-4 (Kd 20 to 300 pM) have been detected on many hematopoietic and non-hematopoietic cell types at levels ranging from 50 to 5000 sites per cell[5],This review will focus on the discrete signal transduction pathways activated by the IL-4 receptor and the coordination of these individual pathways in the regulation of a final biological outcome.
文摘The performance of wxtaraguiatory senescence-inhibition gene PSAG12-IPT in nee has been investigated in the study.422 tranagenic plants from 134 independent resistant calli were obtained from 4 rice varieties through Agrobacterium-mediated transformation.Among them,233 were positive PSAGIZ^IPT tranagenic plants identified by GUS histochemical assay and PCR analysis.Southern analysis showed the transgene was randomly integrated into rice genome,of which 42.29% was single copy.Investigations on photosynthesis function and agronomic characters of Rt generation showed that chlorophy Ⅱ content and photosynthesis rate of flag leaves in tranagenic plants,were 41.23% and 60.24% higher than the control wild-type rice,respectively.The growth duration and plant height of the tranagenic plants were similar to the control.Variations of other characters were dependent on the varieties.For the variety Millin with significant aging phenomenon in China,its total grains per hill,its seed setting rate and 1000-grain weight were increased by 40.44%,8.05% and 8.32% respectively.The results indicated that after leaf senescence of varieties liable to age was delayed,the seed setting rate and the filling degree of seeds were improved,which finally resulted in significantly increased seed yield and taomaas per hill.The new variety Wuyujing 2 without serious aging problem,was also increased in the panicles per hill,the total grains per hill,the seed yield per hill and biomass in different degrees.
文摘Advances in functional genomics have led to discovery of a large group of previous uncharacterized long non-coding RNAs (IncRNAs). Emerging evidence indicates that IncRNAs may serve as master gene regulators through various mechanisms. Dysregulation of IncRNAs is often associated with a variety of human diseases including cancer. Of significant interest, recent studies suggest that IncRNAs participate in the p53 tumor suppressor regulatory network. In this review, we discuss how IncRNAs serve as p53 regulators or p53 effectors. Further characterization of these p53-associated IncRNAs in cancer will provide a better understanding of lncRNA- mediated gene regulation in the p53 pathway. As a result, IncRNAs may prove to be valuable biomarkers for cancer diagnosis or poten- tial targets for cancer therapy.
基金supported by the National Natural Science Foundation of China (No. 31271673)the Special Fund for Agro-Scientific Research in the Public Interest of China (No. 201503127)
文摘Agricultural production systems are immensely exposed to different environmental stresses in which heavy metal stress receives serious concerns. This study was conducted to explore the deleterious effects of different chromium (Cr) stress levels, i.e., O, 30, 60, 90, 120, and 150 μmol L^-1, on two maize genotypes, Wandan 13 and Runnong 35. Both genotypes were evaluated by measuring their growth and yield characteristics, Cr accumulation in different plant tissues, alterations in osmolyte accumulation, generation of reactive oxygen species (ROS), and anti-oxidative enzyme activity to scavenge ROS. The results showed that Cr stress decreased the leaf area, cob formation, 100-grain weight, shoot fresh biomass, and yield formation, while Cr accumulation in different maize tissues was found in the order of roots 〉 leaves 〉 stem ~ seeds in both genotypes. The increased Cr toxicity resulted in higher free proline, soluble sugars and total phenolic contents, and lower soluble protein contents. However, enhanced lipid peroxidation was noticed in the forms of malondialdehyde, hydrogen peroxide (H2O2) and thiobarbituric acid reactive substance accumulation, and electrolyte leakage. The hyperactivity of superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, especially glutathione peroxidase and glutathione reductase indicated that these anti-oxidative enzymes had a central role in protecting maize from Cr toxicity, especially for Wandan 13. Moreover, higher uptake and less translocation of Cr contents into the grains of Wandan 13 implied its importance as a potential candidate against soil Cr pollution.
基金supported by the National Natural Science Foundation of China (Grant Nos. 31300159 U1405215)+2 种基金‘‘Pujiang Talent’’ program (13PJ1411000) Shanghai Science and Technology Development Funds (14QB1402700)Program 15391900500 from Science and Technology Commission of Shanghai Municipality and Technology Committee and Seedling Cultivation Fund of Outstanding Master, Second Military Medical University
文摘Artemisinin, the key ingredient of first-line antimalarial drugs, has large demand every year. The native plant, which produces small quantities of artemisinin, remains as its main source and thus results in a short supply of artemisinin. Intensified efforts have been carried out to elevate artemisinin production. However, the routine metabolic engineering strategy, via overexpressing or down-regulating genes in artemisinin biosynthesis branch pathways, was not very effective as desired. Glandular secretory trichomes, sites of artemisinin biosynthesis on the surface of Artemisia annua L.(A. annua), are the new target for increasing artemisinin yield. In general, the population and morphology of glandular secretory trichomes in A. annua(Aa GSTs) are often positively correlated with artemisinin content. Improved understanding of Aa GSTs will shed light on the opportunities for increasing plant-derived artemisinin. This review article will refresh classification of trichomes in A. annua and provide an overview of the recent achievements regarding Aa GSTs and artemisinin. To have a full understanding of Aa GSTs,factors that are associated with trichome morphology and density will have to be further investigated, such as genes,micro RNAs and phytohormones. The purpose of thisreview was to(1) update the knowledge of the relation between Aa GSTs and artemisinin, and(2) propose new avenues to increase artemisinin yield by harnessing the potential biofactories, Aa GSTs.
文摘Commercial varieties of transgenic Bacillus thuringiensis (Bt) plants have been developed in many countries to control target pests. Initially, the expression of native Bt genes in plants was low due to mRNA instability, improper splicing, and post translation modifications. Subsequently, modifications of the native Bt genes greatly enhanced expression levels. This is a review of the developments that made modern high expression transgenic Bt plants possible, with an emphasis on the reasons for the low level expression of native Bt genes in plant systems, and the techniques that have been used to improve plant expression of Bt toxin genes.