NAC family genes encode plant-specific transcription factors involved in diverse biological processes. In this study, the Arabidopsis NAC gene ATAF1 was found to be induced by drought, high-salinity, abscisic acid (...NAC family genes encode plant-specific transcription factors involved in diverse biological processes. In this study, the Arabidopsis NAC gene ATAF1 was found to be induced by drought, high-salinity, abscisic acid (ABA), methyl jasmonate, mechanical wounding, and Botrytis cinerea infection. Significant induction of ATAF1 was found in an ABA-deficient mutant aba2 subjected to drought or high salinity, revealing an ABA-independent mechanism of expression. Arabidopsis ATAFl-overexpression lines displayed many altered phenotypes, including dwarfism and short primary roots. Furthermore, in vivo experiments indicate that ATAF1 is a bonafide regulator modulating plant responses to many abiotic stresses and necrotrophic-pathogen infection. Overexpression of ATAF1 in Arabidopsis increased plant sensitivity to ABA, salt, and oxidative stresses. Especially, ATAF1 overexpression plants, but not mutant lines, showed remarkably enhanced plant tolerance to drought. Additionally, ATAF1 overexpression enhanced plant susceptibility to the necrotrophic pathogen B. cinerea, but did not alter disease symptoms caused by avirulent or virulent strains of P. syringae pv tomato DC3000. Transgenic plants overexpressing ATAF1 were hypersensitive to oxidative stress, suggesting that reactive oxygen intermediates may be related to ATAFl-mediated signaling in response to both pathogen and abiotic stresses.展开更多
Objective:Large segmental bone defect repair remains a clinical and scientific challenge with increasing interest focusing on combining gene transfection with tissue engineering techniques.The aim of this study is to ...Objective:Large segmental bone defect repair remains a clinical and scientific challenge with increasing interest focusing on combining gene transfection with tissue engineering techniques.The aim of this study is to investigate the effect of connective tissue growth factor(CTGF) on the proliferation and osteogenic differentiation of the bone marrow mesenchymal stem cells(MSCs).Methods:A CTGF-expressing plasmid(pCTGF) was constructed and transfected into MSCs.Then expressions of bone morphogenesis-related genes,proliferation rate,alkaline phosphatase activity,and mineralization were examined to evaluate the osteogenic potential of the CTGF gene-modified MSCs.Results:Overexpression of CTGF was confirmed in pCTGF-MSCs.pCTGF transfection significantly enhanced the proliferation rates of pCTGF-MSCs(P<0.05).CTGF induced a 7.5-fold increase in cell migration over control(P<0.05).pCTGF transfection enhanced the expression of bone matrix proteins,such as bone sialo-protein,osteocalcin,and collagen type I in MSCs.The levels of alkaline phosphatase(ALP) activities of pCTGF-MSCs at the 1st and 2nd weeks were 4.0-and 3.0-fold higher than those of MSCs cultured in OS-medium,significantly higher than those of mock-MSCs and normal control MSCs(P<0.05).Overexpression of CTGF in MSCs enhanced the capability to form mineralized nodules.Conclusion:Overexpression of CTGF could improve the osteogenic differentiation ability of MSCs,and the CTGF gene-modified MSCs are potential as novel cell resources of bone tissue engineering.展开更多
基金We would like to thank Dr Nam-Hai Chua (Rockefeller Univer- sity) for kindly providing the pBA002Myc vector and the Arabi- dopsis Biological Resource Center (ABRC), Ohio State University for providing ToDNA insertion lines. This work was supported by grants from National Natural Science Foundation of China (No. 30530400/90717006/30670195) to Q Xie and Y Wu, the Chinese Academy of Science (KSCX2-YW-N-010 and CXTD-S2005-2), and the (iuangdong Natural Science Foundation, China (No. 5300648) to Z Deng.
文摘NAC family genes encode plant-specific transcription factors involved in diverse biological processes. In this study, the Arabidopsis NAC gene ATAF1 was found to be induced by drought, high-salinity, abscisic acid (ABA), methyl jasmonate, mechanical wounding, and Botrytis cinerea infection. Significant induction of ATAF1 was found in an ABA-deficient mutant aba2 subjected to drought or high salinity, revealing an ABA-independent mechanism of expression. Arabidopsis ATAFl-overexpression lines displayed many altered phenotypes, including dwarfism and short primary roots. Furthermore, in vivo experiments indicate that ATAF1 is a bonafide regulator modulating plant responses to many abiotic stresses and necrotrophic-pathogen infection. Overexpression of ATAF1 in Arabidopsis increased plant sensitivity to ABA, salt, and oxidative stresses. Especially, ATAF1 overexpression plants, but not mutant lines, showed remarkably enhanced plant tolerance to drought. Additionally, ATAF1 overexpression enhanced plant susceptibility to the necrotrophic pathogen B. cinerea, but did not alter disease symptoms caused by avirulent or virulent strains of P. syringae pv tomato DC3000. Transgenic plants overexpressing ATAF1 were hypersensitive to oxidative stress, suggesting that reactive oxygen intermediates may be related to ATAFl-mediated signaling in response to both pathogen and abiotic stresses.
基金supported by the National Basic Research Program (973) of China(No.2005CB623900)
文摘Objective:Large segmental bone defect repair remains a clinical and scientific challenge with increasing interest focusing on combining gene transfection with tissue engineering techniques.The aim of this study is to investigate the effect of connective tissue growth factor(CTGF) on the proliferation and osteogenic differentiation of the bone marrow mesenchymal stem cells(MSCs).Methods:A CTGF-expressing plasmid(pCTGF) was constructed and transfected into MSCs.Then expressions of bone morphogenesis-related genes,proliferation rate,alkaline phosphatase activity,and mineralization were examined to evaluate the osteogenic potential of the CTGF gene-modified MSCs.Results:Overexpression of CTGF was confirmed in pCTGF-MSCs.pCTGF transfection significantly enhanced the proliferation rates of pCTGF-MSCs(P<0.05).CTGF induced a 7.5-fold increase in cell migration over control(P<0.05).pCTGF transfection enhanced the expression of bone matrix proteins,such as bone sialo-protein,osteocalcin,and collagen type I in MSCs.The levels of alkaline phosphatase(ALP) activities of pCTGF-MSCs at the 1st and 2nd weeks were 4.0-and 3.0-fold higher than those of MSCs cultured in OS-medium,significantly higher than those of mock-MSCs and normal control MSCs(P<0.05).Overexpression of CTGF in MSCs enhanced the capability to form mineralized nodules.Conclusion:Overexpression of CTGF could improve the osteogenic differentiation ability of MSCs,and the CTGF gene-modified MSCs are potential as novel cell resources of bone tissue engineering.