Piles socketed in soft rock were traditionally regarded as end bearing piles, and the loads transferred from superstructure were assumed in design to be shouldered totally by the piles. This paper was designated to ...Piles socketed in soft rock were traditionally regarded as end bearing piles, and the loads transferred from superstructure were assumed in design to be shouldered totally by the piles. This paper was designated to deal with the interaction between the piles socketed in weak rock and surrounding soil through field measurement. The pile head reaction and ground pressure under piled raft foundation were monitored, respectively. The analysis of the data measured in situ shows the characteristics of the pile embedded in weak rock are similar to that of friction pile to some extent. The rock socketed pile, together with the surrounding soil, shoulders the weight of the superstructure. It is suggested that soil bearing should be considered in designing the soft rock socketed piles, which can make the design more economical.展开更多
In this work, semi-analytical methods were used to solve the problem of 1-D consolidation of non-homogeneous soft clay with spatially varying coefficients of permeability and compressibility. The semi-analytical solut...In this work, semi-analytical methods were used to solve the problem of 1-D consolidation of non-homogeneous soft clay with spatially varying coefficients of permeability and compressibility. The semi-analytical solution was programmed and then verified by comparison with the obtained analytical solution of a special case. Based on the results of some computations and comparisons with the 1-D homogeneous consolidation (by Terzaghi) and the 1-D non-linear consolidation theory (by Davis et al.) of soft clay, some diagrams were prepared and the relevant consolidation behavior of non-homogeneous soils is discussed. It was shown that the result obtained differs greatly from Terzaghi’s theory and that of the non-linear consolidation theory when the coefficients of permeability and compressibility vary greatly.展开更多
The influence of earthquake forces on ultimate bearing capacity of foundations on sloping ground was studied. A solution to seismic ultimate bearing capacity of strip footings on slope was obtained by utilizing pseudo...The influence of earthquake forces on ultimate bearing capacity of foundations on sloping ground was studied. A solution to seismic ultimate bearing capacity of strip footings on slope was obtained by utilizing pseudo-static analysis method and taking the effect of intermediate principal stress into consideration. Based on limit equilibrium theory, the formulae for computing static bearing capacity factors, Nq, Nc, Nγ, and dynamic bearing capacity factors, Nqd, Ned, Nγd, which are associated with surcharge, cohesion and self-weight of soils respectively, were presented. A great number of analysis calculations were carried out to obtain the relationship curves of the static and dynamic bearing capacity factors versus various calculation parameters. The curves can serve as the practical engineering design. The calculation results also show that when the values of horizontal and vertical seismic coefficients are 0.2, the dynamic bearing capacity factors Nqd, Ned and Nγd, in which the effects of intermediate principal stress are taken into consideration, increase by 4%-42%, 3%-27% and 34%-57%, respectively.展开更多
Aphysical model facility was designed, built, and setup for conducting model tests on a composite foundation in a soil ground. The model tests were carried out on a composite foundation with different combinations of ...Aphysical model facility was designed, built, and setup for conducting model tests on a composite foundation in a soil ground. The model tests were carried out on a composite foundation with different combinations of vertical reinforcement elements in the same soil ground. Via the analysis of the collected data the characteristics of the composite foundation with different reinforcing elements were obtained, including the characteristics of load-settlement curves, column stresses, stresses of the intercolumn soil, pile-soil stress ratio, and load-sharing ratios of columns and soil. Results from the model tests reveal the mechanism of a composite foundation with different reinforcing elements quantitatively. It is concluded that both a composite foundation with a combination of steel pipe pile and sand column and that with a combination of concrete pile and lime column have a higher bearing capacity than the composite foundation with only sand columns with the same conditions of soil ground and loading. A composite foundation with lime column and sand column embodies no much better performance than that with sand colunms only.展开更多
文摘Piles socketed in soft rock were traditionally regarded as end bearing piles, and the loads transferred from superstructure were assumed in design to be shouldered totally by the piles. This paper was designated to deal with the interaction between the piles socketed in weak rock and surrounding soil through field measurement. The pile head reaction and ground pressure under piled raft foundation were monitored, respectively. The analysis of the data measured in situ shows the characteristics of the pile embedded in weak rock are similar to that of friction pile to some extent. The rock socketed pile, together with the surrounding soil, shoulders the weight of the superstructure. It is suggested that soil bearing should be considered in designing the soft rock socketed piles, which can make the design more economical.
基金Project (No. 20030335027) supported by the National Research Foundation for the Doctoral Program of Higher Education of China
文摘In this work, semi-analytical methods were used to solve the problem of 1-D consolidation of non-homogeneous soft clay with spatially varying coefficients of permeability and compressibility. The semi-analytical solution was programmed and then verified by comparison with the obtained analytical solution of a special case. Based on the results of some computations and comparisons with the 1-D homogeneous consolidation (by Terzaghi) and the 1-D non-linear consolidation theory (by Davis et al.) of soft clay, some diagrams were prepared and the relevant consolidation behavior of non-homogeneous soils is discussed. It was shown that the result obtained differs greatly from Terzaghi’s theory and that of the non-linear consolidation theory when the coefficients of permeability and compressibility vary greatly.
基金Project (05GK3024) supported by the Program of Hunan Provincial Science and Technology
文摘The influence of earthquake forces on ultimate bearing capacity of foundations on sloping ground was studied. A solution to seismic ultimate bearing capacity of strip footings on slope was obtained by utilizing pseudo-static analysis method and taking the effect of intermediate principal stress into consideration. Based on limit equilibrium theory, the formulae for computing static bearing capacity factors, Nq, Nc, Nγ, and dynamic bearing capacity factors, Nqd, Ned, Nγd, which are associated with surcharge, cohesion and self-weight of soils respectively, were presented. A great number of analysis calculations were carried out to obtain the relationship curves of the static and dynamic bearing capacity factors versus various calculation parameters. The curves can serve as the practical engineering design. The calculation results also show that when the values of horizontal and vertical seismic coefficients are 0.2, the dynamic bearing capacity factors Nqd, Ned and Nγd, in which the effects of intermediate principal stress are taken into consideration, increase by 4%-42%, 3%-27% and 34%-57%, respectively.
基金Project (No.50478090) supported by the National Natural Science Foundation of China
文摘Aphysical model facility was designed, built, and setup for conducting model tests on a composite foundation in a soil ground. The model tests were carried out on a composite foundation with different combinations of vertical reinforcement elements in the same soil ground. Via the analysis of the collected data the characteristics of the composite foundation with different reinforcing elements were obtained, including the characteristics of load-settlement curves, column stresses, stresses of the intercolumn soil, pile-soil stress ratio, and load-sharing ratios of columns and soil. Results from the model tests reveal the mechanism of a composite foundation with different reinforcing elements quantitatively. It is concluded that both a composite foundation with a combination of steel pipe pile and sand column and that with a combination of concrete pile and lime column have a higher bearing capacity than the composite foundation with only sand columns with the same conditions of soil ground and loading. A composite foundation with lime column and sand column embodies no much better performance than that with sand colunms only.